【題目】已知△ABC中,∠CAB=90°,AC=AB=3,△CDE中,∠CDE=90°,CD=DE=5,連接BE,取BE中點F,連接AF、DF.
(1)如圖1,若C、B、E三點共線,H為BC中點.
①直接指出AF與DF的關系 ;
②直接指出FH的長度 ;
(2)將圖(1)中的△CDE繞C點逆時針旋轉a(如圖2,0°<α<180°),試確定AF與DF的關系,并說明理由;
(3)在(2)中,若AF=,請直接指出點F所經(jīng)歷的路徑長.
【答案】(1)①AF=DF,且AF⊥DF;②;(2)結論:AF=DF,且AF⊥DF(3)當旋轉30°或150°時,AF=,點F經(jīng)歷的路徑長為或
【解析】
(1)①AF=DF,且AF⊥DF,如圖1,過F作MN∥CD,交DE于M,交CA的延長線于N,根據(jù)已知條件易證四邊形FMCN為矩形,再證△FNA≌△FMD,即可得DF=AF,∠AFN=∠FDM,再由∠FDM+∠MFD=90°,可得∠MFD+∠AFN=90°,即∠DFA=90°,所以DF⊥AF; ②因H是BC的中點,可得BH=BC,由FH=BF+BH即可解答;(2) AF=DF,且AF⊥DF,延長AF至S使FS=AF,連接DS、SE,延長SE交AC于T,先證△ABF≌△SEF,再證△SED≌△ACD,即可證得結論;(3) 分旋轉30°或150°兩種情況求點F所經(jīng)歷的路徑長.
(1)①AF=DF,且AF⊥DF,
理由是:如圖1,過F作MN∥CD,交DE于M,交CA的延長線于N,
∵△ABC是等腰直角三角形,且AC=3,
∴BC=3,
同理EC=5,
∵C、B、E三點共線,
∴EB=5﹣3=2,
∵F是BE的中點,
∴EF=BE=,
∵∠E=45°,
∴EM=FM=1,
∴DM=5﹣1=4,
∵∠ECD+∠ACB=45°+45°=90°
∴∠EDC=∠ACD=∠MNC=90°,
∴四邊形MDCN是矩形,
∴CN=DM=4,MN=DC=5,
∴FN=DM=4,F(xiàn)M=AN=1,
∵∠DMF=∠FNA=90°,
∴△FNA≌△DMF,
∴DF=AF,∠AFN=∠FDM,
∵∠FDM+∠MFD=90°,
∴∠MFD+∠AFN=90°,
∴∠DFA=90°,
∴DF⊥AF;
②∵H是BC的中點,
∴BH=BC=,
∴FH=BF+BH=+=;
故答案為:①AF=DF,且AF⊥DF;②;
(2)結論:AF=DF,且AF⊥DF,
理由如下:
延長AF至S使FS=AF,連接DS、SE,延長SE交AC于T,
∵∠AFB=∠EFS,BF=EF,
∴△ABF≌△SEF,
∴AB=SE=AC,∠FAB=∠FSE,
∴∠STC=∠BAC=90°,
∴∠EDC+∠STC=180°,
∴∠TED+∠TCD=180°,
∵∠TED+∠SED=180°,
∴∠SED=∠ACD,
∵ED=CD,
∴△SED≌△ACD,
∴AD=SD,∠ADC=∠SDE,
∴∠ADS=90°,
∴AF=DF,且AF⊥DF;
(3)∵F是BE的中點,H是BC的中點,
∴FH是△BEC的中位線,
∴FH=EC=,
∵在旋轉過程中,CE是定值,則FH也是定值,
∴點F的運動路徑是以H為中點,以FH為半徑的圓,
如圖4,過D作DM⊥AC,交AC的延長線于M,
由(2)知:△AFD是等腰直角三角形,
∵AF=,
∴AD=×=7,
設CM=x,DM=y,
則,
解得:x=,
∴CM=,
∵CD=5,
∴∠CDM=30°,
∴∠DCM=60°,
∵∠ACB+∠DCE+∠BCE+∠DCM=180°,
∴∠BCE=30°,即α=30°,
此時,點F所經(jīng)歷的路徑長==.
如圖5,過D作DM⊥AC,交AC的延長線于M,
同理得:∠DCM=60°,
∵∠ECD=45°,
∴∠ECM=60°﹣45°=15°,
∴α=∠BCE=180°﹣45°+15°=150°,
此時,點F所經(jīng)歷的路徑長==.
綜上所述,當旋轉30°或150°時,AF=,點F經(jīng)歷的路徑長為或.
科目:初中數(shù)學 來源: 題型:
【題目】拋物線上部分點的橫坐標,縱坐標的對應值如下表:
… | … | ||||||
… | … |
根據(jù)上表填空:
①拋物線與軸的交點坐標是________和________;
②拋物線經(jīng)過點,________;
③在對稱軸右側,隨增大而________;
試確定拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,E、F分別是AB、BC邊的中點,EP⊥CD于點P,∠BAD=110°,則∠FPC的度數(shù)是( 。
A. 35° B. 45° C. 50° D. 55°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點D,過D作DE⊥AC,垂足為E.
(1)證明:DE為⊙O的切線;
(2)若BC=4,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,我們把橫、縱坐標均為整數(shù)的點叫做整點.已知反比例函數(shù)y=(m<0)與y=x2﹣4在第四象限內圍成的封閉圖形(包括邊界)內的整點的個數(shù)為2,則實數(shù)m的取值范圍為__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題背景:我們學習等邊三角形時得到直角三角形的一個性質:在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半.即:如圖1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,則:AC=AB.
探究結論:小明同學對以上結論作了進一步研究.
(1)如圖1,連接AB邊上中線CE,由于CE=AB,易得結論:①△ACE為等邊三角形;②BE與CE之間的數(shù)量關系為 .
(2)如圖2,點D是邊CB上任意一點,連接AD,作等邊△ADE,且點E在∠ACB的內部,連接BE.試探究線段BE與DE之間的數(shù)量關系,寫出你的猜想并加以證明.
(3)當點D為邊CB延長線上任意一點時,在(2)條件的基礎上,線段BE與DE之間存在怎樣的數(shù)量關系?請直接寫出你的結論 .
拓展應用:如圖3,在平面直角坐標系xOy中,點A的坐標為(﹣,1),點B是x軸正半軸上的一動點,以AB為邊作等邊△ABC,當C點在第一象限內,且B(2,0)時,求C點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中有三個點A(-3,2)、B(-4,-3)、C(-1,-1)
(1)連接A、B、C三點,請在右圖中作出△ABC關于x軸對稱的圖形△A/B/C/,并直接寫出對稱點A/,B/,C/的坐標;
(2)用直尺在縱軸上找到一點P(0,n)滿足PB/+PA的值最小(在圖中標明點P的位置,并寫出n的值在哪兩個連續(xù)整數(shù)之間).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,E、F分別為線段AC上的兩個點,且DE⊥AC于點E,BF⊥AC于點F,若AB=CD,AE=CF,BD交AC于點M.
(1)試猜想DE與BF的關系,并證明你的結論;
(2)求證:MB=MD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com