【題目】如圖,在菱形ABCD中,E是AB邊上一點(diǎn),且∠A=∠EDF=60°,有下列結(jié)論:①AE=BF;②△DEF是等邊三角形;③△BEF是等腰三角形;④∠ADE=∠BEF,其中結(jié)論正確的個(gè)數(shù)是( )
A.3
B.4
C.1
D.2
【答案】A
【解析】解:連接BD,∵四邊形ABCD是菱形,
∴AD=AB,∠ADB= ∠ADC,AB∥CD,
∵∠A=60°,
∴∠ADC=120°,∠ADB=60°,
同理:∠DBF=60°,
即∠A=∠DBF,
∴△ABD是等邊三角形,
∴AD=BD,
∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,
∴∠ADE=∠BDF,
∵在△ADE和△BDF中,
,
∴△ADE≌△BDF(ASA),
∴DE=DF,AE=BF,故①正確;
∵∠EDF=60°,
∴△EDF是等邊三角形,
∴②正確;
∴∠DEF=60°,
∴∠AED+∠BEF=120°,
∵∠AED+∠ADE=180°﹣∠A=120°,
∴∠ADE=∠BEF;
故④正確.
∵△ADE≌△BDF,
∴AE=BF,
同理:BE=CF,
但BE不一定等于BF.
故③錯(cuò)誤.
綜上所述,結(jié)論正確的是①②④.
故選:A.
【考點(diǎn)精析】利用等腰三角形的判定和菱形的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(簡(jiǎn)稱:等角對(duì)等邊).這個(gè)判定定理常用于證明同一個(gè)三角形中的邊相等;菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AD=12cm,BC=15cm,點(diǎn)P自點(diǎn)A向D以1cm/s的速度運(yùn)動(dòng),到D點(diǎn)即停止.點(diǎn)Q自點(diǎn)C向B以2cm/s的速度運(yùn)動(dòng),到B點(diǎn)即停止,點(diǎn)P,Q同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t(s).
(1)用含t的代數(shù)式表示: AP=;DP=;BQ=;CQ= .
(2)當(dāng)t為何值時(shí),四邊形APQB是平行四邊形?
(3)當(dāng)t為何值時(shí),四邊形PDCQ是平行四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象的頂點(diǎn)坐標(biāo)是(﹣1,﹣6),并且該圖象經(jīng)過點(diǎn)(2,3)表達(dá)式為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一場(chǎng)籃球賽中,球員甲跳起投籃,已知球出手時(shí)離地面m,與籃圈中心的水平距離為7 m,當(dāng)球水平運(yùn)行4 m時(shí)達(dá)到離地面的最大高度4 m.設(shè)籃球運(yùn)行的軌跡為拋物線的一部分,籃圈距地面3 m,在籃球比賽中,當(dāng)進(jìn)攻方球員要投籃時(shí),防守方球員常借身高優(yōu)勢(shì)及較強(qiáng)的彈跳封殺對(duì)方,這就是平常說的蓋帽.(注:蓋帽應(yīng)在球達(dá)到最高點(diǎn)前進(jìn)行,否則就是“干擾球”,屬犯規(guī).)
(1)問:此球能否投中?
(2)此時(shí),防守方球員乙前來蓋帽,已知乙的最大摸球高度為3.19 m,則他如何做才能成功?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】月球的半徑約為1738000m,1738000這個(gè)數(shù)用科學(xué)記數(shù)法可表示為( 。
A.1.738×106
B.1.738×107
C.0.1738×107
D.17.38×105
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx過A(4,0),B(1,3)兩點(diǎn),點(diǎn)C、B關(guān)于拋物線的對(duì)稱軸對(duì)稱,過點(diǎn)B作直線BH⊥x軸,交x軸于點(diǎn)H.
(1)求拋物線的表達(dá)式;
(2)直接寫出點(diǎn)C的坐標(biāo),并求出△ABC的面積;
(3)點(diǎn)P是拋物線上一動(dòng)點(diǎn),且位于第四象限,當(dāng)△ABP的面積為6時(shí),求出點(diǎn)P的坐標(biāo);
(4)若點(diǎn)M在直線BH上運(yùn)動(dòng),點(diǎn)N在x軸上運(yùn)動(dòng),當(dāng)以點(diǎn)C、M、N為頂點(diǎn)的三角形為等腰直角三角形時(shí),請(qǐng)直接寫出此時(shí)△CMN的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件中,隨機(jī)事件是( )
A.太陽(yáng)繞著地球轉(zhuǎn)
B.小明騎車經(jīng)過某個(gè)十字路口時(shí)遇到紅燈
C.地球上海洋面積大于陸地面積
D.一個(gè)月有37天
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若三角形的兩邊長(zhǎng)分別為6 ㎝,9 cm,則其第三邊的長(zhǎng)可能為
A. 2㎝ B. 3 cm C. 7㎝ D. 16 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AN是⊙M的直徑,NB∥x軸,AB交⊙M于點(diǎn)C.
(1)若點(diǎn)A(0,6),N(0,2),∠ABN=30°,求點(diǎn)B的坐標(biāo);
(2)若D為線段NB的中點(diǎn),求證:直線CD是⊙M的切線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com