(2000•武漢)已知:如圖1,點O1在x軸的正半軸上,⊙O1與x軸交于C、D兩點,半徑為4的⊙O與x軸的負(fù)半軸交于G點.⊙O與⊙O1的交點A、B在y軸上,設(shè)⊙O1的弦AC的延長線交⊙O于F點,連接GF,且AF=2GF
(1)求證:C為線段OG的中點;
(2)連接AO1,作⊙O1的弦DE,使DE∥AO1,求E點的坐標(biāo);
(3)如圖2,線段EA、EB(或它們的延長線)分別交⊙O于點M、N.問:當(dāng)點E在(不含端點A、B)上運動時,線段MN的長度是否會發(fā)生變化?試證明你的結(jié)論.

【答案】分析:(1)證明:連接AG,易得△AGC∽△AFG,又AF=2GF,可得⊙O的半徑為4,則AG=4,
GC=2=OG,即可得結(jié)論;
(2)連接OE交AO1于點H,作EK⊥CD于K,易得Rt△AOO1≌Rt△CHO1,又由O1H∥DE,且CO1=O1D,可得ED=2HO1=6,有三角函數(shù)的定義可得EK與OKD的值,進而可得點E的坐標(biāo);
(3)當(dāng)點E在上運動時,MN的長度不變;易得△EMN∽△EBA,進而連接AN,則AN⊥BE,∠ANE=90°,=cos∠E,MN=AB•cos∠E=8cos∠E,分析可得結(jié)論.
解答:(1)證明:連接AG,
∵OA⊥OG,OA=OG,
∴∠AGC=∠AFG=45°,∠GAC=∠FAG,
∴△AGC∽△AFG,
又AF=2GF,

∵⊙O的半徑為4,
∴AG=4
∴GC=2=OG,
即點C為線段OG的中點;

(2)解:連接OE交AO1于點H,作EK⊥CD于K,
∵AO1∥ED,DE⊥CE,
∴O1A⊥CE,
∵OA=4,OC=OG=2,OA2=OC×OD,
∴OD=8,O1O=3,
∴Rt△AOO1≌Rt△CHO1,
∴O1H=O1O=3,
又∵O1H∥DE,CO1=O1D,
∴ED=2HO1=6,
∴sin∠EDK=sin∠AO1O=,cos∠EDK=,
在Rt△EDK中,EK=ED×sin∠EDK=6×=
KD=ED×cos∠EDK=6×=,
OK=OD-KD=,
故,點E的坐標(biāo)為(,);

(3)解:當(dāng)點E在上運動時,MN的長度不變;
在△EMN和△EBA中,∵∠E=∠E,∠EMN=∠EBA,
∴△EMN∽△EBA.
,
即MN=×AB,
連接AN,則AN⊥BE,∠ANE=90°,=cos∠E,MN=AB×cos∠E=8cos∠E,
當(dāng)點E在上運動時,∠E的大小不變,8cos∠E是常量,故MN的長度不變.
點評:本題主要考查弦切角定理,相似三角形的判定及平行線的性質(zhì),難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《圓》(01)(解析版) 題型:選擇題

(2000•武漢)已知下列四個命題:
①過原點O的直線的解析式為y=kx(k≠0);
②有兩邊和其中一邊上的高對應(yīng)相等的兩個三角形全等;
③有兩邊和其中一邊上的中線對應(yīng)相等的兩個三角形全等;
④在同圓或等圓中,若圓周角不等則所對的弦也不等.
其中不正確的命題是( )
A.只有①②
B.①②③
C.①②④
D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《三角形》(01)(解析版) 題型:選擇題

(2000•武漢)已知下列四個命題:
①過原點O的直線的解析式為y=kx(k≠0);
②有兩邊和其中一邊上的高對應(yīng)相等的兩個三角形全等;
③有兩邊和其中一邊上的中線對應(yīng)相等的兩個三角形全等;
④在同圓或等圓中,若圓周角不等則所對的弦也不等.
其中不正確的命題是( )
A.只有①②
B.①②③
C.①②④
D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(01)(解析版) 題型:選擇題

(2000•武漢)已知下列四個命題:
①過原點O的直線的解析式為y=kx(k≠0);
②有兩邊和其中一邊上的高對應(yīng)相等的兩個三角形全等;
③有兩邊和其中一邊上的中線對應(yīng)相等的兩個三角形全等;
④在同圓或等圓中,若圓周角不等則所對的弦也不等.
其中不正確的命題是( )
A.只有①②
B.①②③
C.①②④
D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年湖北省武漢市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2000•武漢)已知下列四個命題:
①過原點O的直線的解析式為y=kx(k≠0);
②有兩邊和其中一邊上的高對應(yīng)相等的兩個三角形全等;
③有兩邊和其中一邊上的中線對應(yīng)相等的兩個三角形全等;
④在同圓或等圓中,若圓周角不等則所對的弦也不等.
其中不正確的命題是( )
A.只有①②
B.①②③
C.①②④
D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年湖北省武漢市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2000•武漢)已知.求()÷()的值.

查看答案和解析>>

同步練習(xí)冊答案