在Rt△ABC中,∠C=90°,AB=10.若以點C為圓心,CB為半徑的圓恰好經(jīng)過AB的中點D,則AC=( )
A.5
B.
C.
D.6
【答案】分析:連結(jié)CD,直角三角形斜邊上的中線性質(zhì)得到CD=DA=DB,利用半徑相等得到CD=CB=DB,可判斷△CDB為等邊三角形,則∠B=60°,所以∠C=30°,然后根據(jù)含30度的直角三角形三邊的關(guān)系先計算出BC,再計算AC.
解答:解:連結(jié)CD,如圖,
∵∠C=90°,D為AB的中點,
∴CD=DA=DB,
而CD=CB,
∴CD=CB=DB,
∴△CDB為等邊三角形,
∴∠B=60°,
∴∠C=30°,
∴BC=AB=×10=5,
∴AC=BC=5
故選C.
點評:本題考查了等邊三角形的判定與性質(zhì):三邊都相等的三角形為等邊三角形;等邊三角形的三個內(nèi)角都等于60°.也考查了直角三角形斜邊上的中線性質(zhì)以及含30度的直角三角形三邊的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一點,以BD為直徑的⊙O切AC于E,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠C=90°,AB=12,點D是AB的中點,點O是△ABC的重心,則OD的長為( 。
A、12B、6C、2D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,已知a及∠A,則斜邊應(yīng)為( 。
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求畫出圖形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,則AC:BC的值為( 。
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步練習(xí)冊答案