【題目】拋物線 y=x2+mx+n 過點(diǎn)(-1,8)和點(diǎn)(4,3)且與 x 軸交于 A,B 兩點(diǎn), 與 y 軸交于點(diǎn) C
(1)求拋物線的解析式;
(2)如圖1,AD 交拋物線于 D,交直線 BC 于點(diǎn) G,且 AG=GD,求點(diǎn) D 的坐標(biāo);
(3)如圖2,過點(diǎn) M(3,2)的直線交拋物線于 P,Q,AP 交 y 軸于點(diǎn) E,AQ 交y 軸于點(diǎn) F,求OE·OF的值.
【答案】(1)y=x2-4x+3;(2)D(, )或(,);(3)2.
【解析】
(1)利用待定系數(shù)法求函數(shù)解析式即可;(2)先求得點(diǎn)A、B、C的坐標(biāo)及直線BC的解析式,過點(diǎn)G作GR⊥x軸于點(diǎn)R,過點(diǎn)D作DK⊥x軸于點(diǎn)K(如圖),由AG=GD,可得GR=DK,設(shè)點(diǎn)D的坐標(biāo)為(a,a2-4a+3),則點(diǎn)G的坐標(biāo)為( ,-+3),可得方程-+3=(a2-4a+3),解方程求得a的值,即可得點(diǎn)D的坐標(biāo);(3)設(shè)AQ的解析式為y=ax-a,AP的解析式為y=bx-b,分別根拋物線的解析式聯(lián)立,求得點(diǎn)P、Q的橫坐標(biāo),在設(shè)PQ的解析式為y=kx+b,代入M(3,2)可得y=kx+2-3k. 將PQ的解析式為與拋物線解析式聯(lián)立得到關(guān)于x的一元二次方程,然后依據(jù)一元二次方程根與系數(shù)的關(guān)系可求得ab=﹣2,再由ab的值可得到OEOF的值即可.
(1)把點(diǎn)(-1,8)和點(diǎn)(4,3)代入y=x2+mx+n得,
,
解得,
∴y=x2-4x+3;
(2)令x2-4x+3=0,解得x=1或x=3,
∴A(1,0),B(3,0);
把x=0代入y=x2-4x+3得y=3,
∴C(0,3);
∴直線BC的解析式為y=-x+3.
如圖,過點(diǎn)G作GR⊥x軸于點(diǎn)R,過點(diǎn)D作DK⊥x軸于點(diǎn)K,
∴GR∥DK,
∵AG=GD,
∴GR=DK,
設(shè)點(diǎn)D的坐標(biāo)為(a,a2-4a+3),則點(diǎn)G的坐標(biāo)為( ,-+3),
即GR=-+3,DK= a2-4a+3,
∴-+3=(a2-4a+3),
整理得a2-3a-2=0,
解得,,,
∴D(, )或(,).
(3)∵A(1,0),
設(shè)AQ的解析式為y=ax-a,AP的解析式為y=bx-b,
∴ ,解得x=1或x=a+3,
∴點(diǎn)Q的橫坐標(biāo)為a+3,
同理求得點(diǎn)P的橫坐標(biāo)為b+3.
設(shè)PQ的解析式為y=kx+b,把點(diǎn) M(3,2)代入可得3k+b=2,即b=2-3k.
∴y=kx+2-3k.
∴kx+2-3k= x2-4x+3,即x2-(4+k)x+1+3k=0,
∵P、Q是拋物線y=x2-4x+3與直線PQ的交點(diǎn),
∴a+3、b+3是方程x2-(4+k)x+1+3k=0的兩個(gè)根,
∴a+3+b+3=4+k,(a+3)(b+3)=1+3k,
即a+b=k-2,ab+3(a+b)+9=1+3k,
∴ab+3(k-2)+9=1-3k,
整理得ab=-2,
∵OE=-b,OF=a,
∴OEOF=-ab=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸相交于點(diǎn)、兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),與軸相交于點(diǎn),頂點(diǎn)為.
直接寫出、、三點(diǎn)的坐標(biāo)和拋物線的對(duì)稱軸.
連接、,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一元二次方程:M:ax2+bx+c=0; N:cx2+bx+a=0,其中ac≠0,a≠c,以下四個(gè)結(jié)論:
①如果方程M有兩個(gè)不相等的實(shí)數(shù)根,那么方程N也有兩個(gè)不相等的實(shí)數(shù)根;
②如果方程M有兩根符號(hào)相同,那么方程N的兩根符號(hào)也相同;
③如果m是方程M的一個(gè)根,那么是方程N的一個(gè)根;
④如果方程M和方程N有一個(gè)相同的根,那么這個(gè)根必是x=1
正確的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,,.點(diǎn)從開始沿邊向點(diǎn)以的速度移動(dòng),與此同時(shí),點(diǎn)從點(diǎn)開始沿邊向點(diǎn)以的速度移動(dòng).如果、分別從、同時(shí)出發(fā),當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),兩點(diǎn)停止運(yùn)動(dòng),問:
經(jīng)過幾秒,的面積等于?
(2)的面積會(huì)等于嗎?若會(huì),請(qǐng)求出此時(shí)的運(yùn)動(dòng)時(shí)間;若不會(huì),請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為 1 的正方形組成的網(wǎng)格中,△ ABC的頂點(diǎn)均在格點(diǎn)上,A(3,2), B(4, 3), C(1, 1)
(1)畫出△ABC關(guān)于y軸對(duì)稱的圖形△ A′B′C′
(2)寫出A′、B′、C′的坐標(biāo)(直接寫出答案) A′ ;B′ ;C′ ;
(3)寫出△ A′B′C′的面積為 .(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線
當(dāng)拋物線的頂點(diǎn)在軸上時(shí),求該拋物線的解析式;
不論取何值時(shí),拋物線的頂點(diǎn)始終在一條直線上,求該直線的解析式;
若有兩點(diǎn),,且該拋物線與線段始終有交點(diǎn),請(qǐng)直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=∠2,AC=AD,請(qǐng)?jiān)黾右粋(gè)條件,使△ABC≌△AED,你添加的條件是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠B=30°,D為BC上一點(diǎn),且∠DAB=45°.
(1) 求∠DAC的度數(shù).
(2) 求證:△ACD是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的袋子里共有2個(gè)黃球和3個(gè)白球,每個(gè)球除顏色外都相同,小亮從袋子中任意摸出一個(gè)球,結(jié)果是白球,則下面關(guān)于小亮從袋中摸出白球的概率和頻率的說明正確的是( 。
A. 小亮從袋中任意摸出一個(gè)球,摸出白球的概率是1
B. 小亮從袋中任意摸出一個(gè)球,摸出白球的概率是0
C. 在這次實(shí)驗(yàn)中,小亮摸出白球的頻率是1
D. 由這次實(shí)驗(yàn)的頻率去估計(jì)小亮從袋中任意摸出一個(gè)球,摸出白球的概率是1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com