【題目】如圖,在△ABC中,AB=BC,以AB為直徑的⊙O交AC于點(diǎn)D,過D作直線DE垂直BC于F,且交BA的延長線于點(diǎn)E.

(1)求證:直線DE是⊙O的切線;
(2)若cos∠BAC= ,⊙O的半徑為6,求線段CD的長.

【答案】
(1)

證明:連接BD、OD,

∵AB是⊙O的直徑,

∴∠ADB=90°,即BD⊥AC,

∵BA=BC,

∴D為AC中點(diǎn),又O是AB中點(diǎn),

∴OD為△ABC的中位線,

∴OD∥BC,

∴∠BFE=∠ODE,

∵DE⊥BC,

∴∠BFE=90°,

∴∠ODE=90°,

∴OD⊥DE,

∴直線DE是⊙O的切線


(2)

解:

∵⊙O的半徑為6,

∴AB=12,

在Rt△ABD中,cos∠BAC= =

∴AD=4,

由(1)知BD是△ABC的中線,

∴CD=AD=4.


【解析】(1)連接BD、OD,由AB為圓O的直徑,利用直徑所對的圓周角為直角得到BD與AC垂直,又BA=BC,利用等腰三角形的三線合一性質(zhì)得到D 為AC的中點(diǎn),又O為AB的中點(diǎn),可得出OD為三角形ABC的中位線,利用三角形中位線定理得到OD與BC平行,由EF垂直于BC,得到EF垂直于OD, 可得出EF為圓O的切線;(2)由圓的半徑為6,求出直徑AB為12,在直角三角形ABD中,由cos∠BAC的值及AB的長,求出AD的長,再由第一問 得到D為AC的中點(diǎn),得到CD=AD,即可求出CD的長.
【考點(diǎn)精析】本題主要考查了圓周角定理和切線的判定定理的相關(guān)知識點(diǎn),需要掌握頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半;切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,根據(jù)2013﹣2017年某市財(cái)政總收入(單位:億元)統(tǒng)計(jì)圖所提供的信息,下列判斷正確的是( 。

A. 2013~2017年財(cái)政總收入呈逐年增長

B. 預(yù)計(jì)2018年的財(cái)政總收入約為253.43億元

C. 2014~2015年與2016~2017年的財(cái)政總收入下降率相同

D. 2013~2014年的財(cái)政總收入增長率約為6.3%

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形的頂點(diǎn)C與原點(diǎn)O重合,點(diǎn)By軸的正半軸上,點(diǎn)A在反比例函數(shù)的圖象上,點(diǎn)D的坐標(biāo)為.將菱形ABCD沿x軸正方向平移____個(gè)單位,可以使菱形的另一個(gè)頂點(diǎn)恰好落在該函數(shù)圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形A1B1B2C1 , A2B2B3C2 , A3B3B4C3 , …,AnBnBn+1Cn , 按如圖所示放置,使點(diǎn)A1、A2、A3、A4、、An在射線OA上,點(diǎn)B1、B2、B3、B4、、Bn在射線OB上.若∠AOB=45°,OB1=1,圖中陰影部分三角形的面積由小到大依次記作S1 , S2 , S3 , …,Sn , 則Sn=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)期間,小明、小亮等同學(xué)隨家長一行共12人到某公園游玩,成人門票每張40元,學(xué)生門票5折優(yōu)惠,小明直接去窗口買票需要400元.

(1)他們共去了幾個(gè)成人,幾個(gè)學(xué)生?

(2)小亮從美團(tuán)網(wǎng)看到訂團(tuán)體票信息,9人以上(含9人)的團(tuán)體訂票按成人價(jià)8.5折優(yōu)惠,請你幫助策劃,用何種方式購票最省錢,給出方案并計(jì)算出票價(jià)總數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將兩條等寬的紙條重疊在一起,得到四邊形,若,則___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC中,AB=20,AC=15,BC邊上的高為12,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸上、三點(diǎn)所代表的數(shù)分別是、、,且.若下列選項(xiàng)中,有一個(gè)表示、、三點(diǎn)在數(shù)軸上的位置關(guān)系,則此選項(xiàng)為何?(

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+2的圖象與x軸交于A(﹣3,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C.

(1)求這個(gè)二次函數(shù)的關(guān)系解析式;
(2)點(diǎn)P是直線AC上方的拋物線上一動(dòng)點(diǎn),是否存在點(diǎn)P,使△ACP的面積最大?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由;

(3)在平面直角坐標(biāo)系中,是否存在點(diǎn)Q,使△BCQ是以BC為腰的等腰直角三角形?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,說明理由;
(4)點(diǎn)Q是直線AC上方的拋物線上一動(dòng)點(diǎn),過點(diǎn)Q作QE垂直于x軸,垂足為E.是否存在點(diǎn)Q,使以點(diǎn)B、Q、E為頂點(diǎn)的三角形與△AOC相似?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,說明理由;
(5)點(diǎn)M為拋物線上一動(dòng)點(diǎn),在x軸上是否存在點(diǎn)Q,使以A、C、M、Q為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案