【題目】1)問題發(fā)現(xiàn):如圖1,在平面直角坐標系中,A點的坐標為(2,0),點B的坐標為(0,2),連接AB,點CAB的中點,點Q是線段AO上的動點,連接OCCQ,以BQ為邊構造等邊△BPQ,連接OP、PQ.填空:

OPCQ的大小關系是   

OP的最小值為   

2)解決問題:在(1)的條件下,點Q運動的過程中當△ACQ為直角三角形時,求OP的長?

3)拓展探究:如圖2,當點B為直線x=﹣1上一動點,點A2,0),連接AB,以AB為一邊向下作等邊△ABP,連接OP,請直接寫出OP的最小值.

【答案】(1)①OPCQ;②1;(2OP的長為1;(3OP的最小值為+1

【解析】

1)①證明△OBC是等邊三角形,得出OBBC,證明△PBO≌△QBCSAS),可得出結論;

②當CQOA時,CQ值最小,得出最小值為OB1;

2)分兩種情況:①以Q點為直角頂點時,CQAO于點Q,②以C點為直角頂點時,CQAC,由直角三角形的性質可得出答案;

3)以OA為對稱軸,在x=﹣1上取DE兩點,作等邊△ADE,連接EP,并延長EPx軸于點F.證明△AEP≌△ADBSAS),得出∠AEP=∠ADB120°,可求出HF,OF,當OPEF時,OP最小,則OPOF

解:(1)問題發(fā)現(xiàn)

①∵A點的坐標為(2,0),點B的坐標為(0,2),

OA2OB2,

∴∠OBA60°,

CAB的中點,

OBOC

∴△OBC是等邊三角形,

OBBC,

∵△BPQ是等邊三角形,

PBBQ,∠PBQ60°,

∴∠PBO=∠QBC

∴△PBO≌△QBCSAS),

OPCQ,

②∵CAB的中點,

CQOA時,CQ值最小,最小值為OB1,

OP的最小值為1

故答案為:OPCQ1;

2)解決問題

當三角形ACQ為直角三角形時,

①以Q點為直角頂點時,CQAO于點Q,

CAB的中點,

AC,

CQAC1,

OP1

②以C點為直角頂點時,CQAC,

AC2

CQACtan30°=2span>×

OP

綜上所述:當三角形ACQ為直角三角形時,OP的長為1;

3)拓展探究

如圖,以OA為對稱軸,在x=﹣1上取D,E兩點,作等邊△ADE,連接EP,并延長EPx軸于點F

在△AEP與△ADB中,

ABAP,∠BAD=∠PAE,ADAE,

∴△AEP≌△ADBSAS),

∴∠AEP=∠ADB120°,

∴∠HEF60°,且EHAF,

HFHA+1,

FOFH+OH+2

∴點P在直線EF上運動,

OPEF時,OP最小,

OPOF

OP的最小值為+1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A的坐標為(3,0),點C的坐標為(0,4),OABC為矩形,反比例函數(shù) 的圖象過AB的中點D,且和BC相交于點EF為第一象限的點,AF12,CF13

1)求反比例函數(shù)和直線OE的函數(shù)解析式;

2)求四邊形OAFC的面積?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角ACB=75°,支架AF的長為2.50米,籃板頂端F點到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°0.2588,sin75°0.9659,tan75°3.732,1.732,1.414)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】國家為了實現(xiàn)2020年全面脫貧目標,實施“精準扶貧”戰(zhàn)略,采取異地搬遷,產業(yè)扶持等措施.使貧困戶的生活條件得到改善,生活質量明顯提高.某旗縣為了全面了解貧困縣對扶貧工作的滿意度情況,進行隨機抽樣調查,分為四個類別:A.非常滿意;B.滿意;C.基本滿意;D.不滿意.依據(jù)調查數(shù)據(jù)繪制成圖1和圖2的統(tǒng)計圖(不完整).

根據(jù)以上信息,解答下列問題:

(1)將圖1補充完整;

(2)通過分析,貧困戶對扶貧工作的滿意度(A、B、C類視為滿意)是  ;

(3)市扶貧辦從該旗縣甲鄉(xiāng)鎮(zhèn)3戶、乙鄉(xiāng)鎮(zhèn)2戶共5戶貧困戶中,隨機抽取兩戶進行滿意度回訪,求這兩戶貧困戶恰好都是同一鄉(xiāng)鎮(zhèn)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了豐富學生課余生活,開展了第二課堂活動,推出了以下四種選修課程:.繪畫;.唱歌;.跳舞;.演講;.書法.學校規(guī)定:每個學生都必須報名且只能選擇其中的一個課程.學校隨機抽查了部分學生,對他們選擇的課程情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖.

請結合統(tǒng)計圖中的信息解決下列問題:

1)這次抽查的學生人數(shù)是多少人?

2)將條形統(tǒng)計圖補充完整.

3)求扇形統(tǒng)計圖中課程所對應扇形的圓心角的度數(shù).

4)如果該校共有1200名學生,請你估計該校選擇課程的學生約有多少人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=4,若將△ABC繞點B順時針旋轉60°,點A的對應點為點A′,點C的對應點為點C′,點DA′B的中點,連接AD.則點A的運動路徑與線段AD、AD圍成的陰影部分面積是______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究

如圖,拋物線經過點A(-2,0),B(4,0)兩點,與軸交于點C,點D是拋物線上一個動點,設點D的橫坐標為.連接AC,BCDB,DC,

(1)求拋物線的函數(shù)表達式;

(2)△BCD的面積等于△AOC的面積的時,求的值;

(3)(2)的條件下,若點M軸上的一個動點,點N是拋物線上一動點,試判斷是否存在這樣的點M,使得以點B,DM,N為頂點的四邊形是平行四邊形,若存在,請直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩座建筑物的水平距離BC40m,從D點測得A點的仰角為30°,B點的俯角為10°,求建筑物AB的高度(結果保留小數(shù)點后一位).

參考數(shù)據(jù)sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,1.732.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學在百貨商場購進了A、B兩種品牌的籃球,購買A品牌藍球花費了2400元,購買B品牌藍球花費了1950元,且購買A品牌藍球數(shù)量是購買B品牌藍球數(shù)量的2倍,已知購買一個B品牌藍球比購買一個A品牌藍球多花50元.

(1)求購買一個A品牌、一個B品牌的藍球各需多少元?

(2)該學校決定再次購進A、B兩種品牌藍球共30個,恰逢百貨商場對兩種品牌藍球的售價進行調整,A品牌藍球售價比第一次購買時提高了10%,B品牌藍球按第一次購買時售價的9折出售,如果這所中學此次購買A、B兩種品牌藍球的總費用不超過3200元,那么該學校此次最多可購買多少個B品牌藍球?

查看答案和解析>>

同步練習冊答案