【題目】計算:解不等式和方程組
(1)解不等式:5+x≥3(x﹣1);
(2)解方程組: .
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的方格紙中,
(1)作出△ABC關于MN對稱的圖形△A1B1C1.
(2)說明△A2B2C2可以由△A1B1C1經(jīng)過怎樣的平移變換得到?
(3)以MN所在直線為x軸,AA1的中點為坐標原點,建立直角坐標系xOy,試在x軸上找一點P,使得PA1+PB2最小,直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AE是∠BAC的角平分線,AD是BC邊上的高,且∠B = 40, ∠C = 60,求∠CAD、∠EAD的度數(shù)。(6分)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠A=110°,在邊AN上取B,C,使AB=BC.點P為邊AM上一點,將△APB沿PB折疊,使點A落在角內(nèi)點E處,連接CE,則∠BPE+∠BCE=°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰梯形ABCD中,AB∥DC,AD=BC=5cm,AB=12cm,CD=6Cm,點P從A開始沿AB邊向B以每秒3cm的速度移動,點Q從C開始沿CD邊向D以每秒1cm的速度移動,如果點P、Q分別從A、C同時出發(fā),當其中一點到達終點時,運動停止,設運動時間為秒.
(1)求證:當時,四邊形APQD是平行四邊形;
(2)PQ是否可能平分對角線BD?若能,求出當為何值時PQ平分BD;若不能,請說明理由;
(3)當PD=PQ時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司對一批某品牌襯衣的質量抽檢結果如下表.
(1)從這批襯衣眾人抽1件是次品的概率約為多少?
(2)如果銷售這批襯衣600件,那么至少要再準備多少件正品襯衣供買到次品的顧客更換?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:小明熱愛數(shù)學,在課外書上看到了一個有趣的定理﹣﹣“中線長定理”:三角形兩邊的平方和等于第三邊的一半與第三邊上的中線的平方和的兩倍.如圖1,在△ABC中,點D為BC的中點,根據(jù)“中線長定理”,可得:
AB2+AC2=2AD2+2BD2 . 小明嘗試對它進行證明,部分過程如下:
解:過點A作AE⊥BC于點E,如圖2,在Rt△ABE中,AB2=AE2+BE2 ,
同理可得:AC2=AE2+CE2 , AD2=AE2+DE2 ,
為證明的方便,不妨設BD=CD=x,DE=y,
∴AB2+AC2=AE2+BE2+AE2+CE2=…
(1)請你完成小明剩余的證明過程;
理解運用:
(2)①在△ABC中,點D為BC的中點,AB=6,AC=4,BC=8,則AD=;
②如圖3,⊙O的半徑為6,點A在圓內(nèi),且OA=2 ,點B和點C在⊙O上,且∠BAC=90°,點E、F分別為AO、BC的中點,則EF的長為
拓展延伸:
(3)小明解決上述問題后,聯(lián)想到《能力訓練》上的題目:如圖4,已知⊙O的半徑為5 ,以A(﹣3,4)為直角頂點的△ABC的另兩個頂點B,C都在⊙O上,D為BC的中點,求AD長的最大值.
請你利用上面的方法和結論,求出AD長的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線分別交于點與的角平分線交于點與交于點交于.
(1)求證:
(2)如圖2,連接為上一動點,平分交于則的大小是否發(fā)生變化?若不變,求出其值;若改變,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com