如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(2,3),B(-3,n)兩點(diǎn).
1.求一次函數(shù)與反比例函數(shù)的解析式;
2.根據(jù)所給條件,請(qǐng)直接寫出不等式kx+b>的解集
3.過點(diǎn)B作BC⊥x軸,垂足為C,求S△ABC
1.y=x+1; y=
2.-3<x<0或x>2
3.5
【解析】解:(1)∵點(diǎn)A(2,3)在y=的圖象上,
∴m=6,……………………………………………………………… 1分
∴反比例函數(shù)的解析式為y=………………………………………2分
∴n==-2,
∵點(diǎn)A(2,3),B(-3,-2)在y=kx+b的圖象上,
∴
∴
∴一次函數(shù)的解析式為y=x+1.……………………………………4分
(2)-3<x<0或x>2;…………………………………………6分
(3)方法一:設(shè)AB交x軸于點(diǎn)D,則D的坐標(biāo)為(-1,0),
∴CD=2,……………………………………………………………7分
∴S△ABC=S△BCD+S△ACD
=×2×2+×2×3=5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,一次函數(shù)y1=ax+2與反比例函數(shù)y2=的圖象交于點(diǎn)A(4,m)和B(-8,-2),與y軸交于點(diǎn)C,與x軸交于點(diǎn)D.
(1)求a、k的值;
(2)過點(diǎn)A作AE⊥x軸于點(diǎn)E,若P為反比例函數(shù)圖象的位于第一象限部分上的一點(diǎn),且直線OP分△ADE所得的兩部分面積之比為2∶7.請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,請(qǐng)?jiān)?i>x軸上找一點(diǎn)Q,使得△PQC的周長最小,并求出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
(11·柳州)(本題滿分6分).
如圖,一次函數(shù)y=-4x-4的圖象與x軸、y軸分別交于A、C
(1)求拋物線的函數(shù)表達(dá)式;
(2)設(shè)拋物線的頂點(diǎn)為D,求四邊形ABDC的面積;
(3)作直線MN平行于x軸,分別交線段AC、BC于點(diǎn)M、N.問在x軸上是否存在點(diǎn)P,使得△PMN是等腰直角三角形?如果存在,求出所有滿足條件的P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆湖北省隨州市四校中考模擬聯(lián)考數(shù)學(xué)卷(帶解析) 題型:填空題
如圖,一次函數(shù)y=ax+b的圖象與x軸、y軸交于A、B兩點(diǎn),與反比例函數(shù)y=的圖象相交于C、D兩點(diǎn),分別過C、D兩點(diǎn)作y軸、x軸的垂線,垂足為E、F,連結(jié)CF、DE,有下列四個(gè)結(jié)論:①△CEF與△DEF的面積相等;②△AOB∽△FOE;③AC=BD;④△DCE≌△CDF,其中正確的結(jié)論是______(把你認(rèn)為正確結(jié)論的序號(hào)填上。)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆浙江省蘭溪市梅江初中九年級(jí)上學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題
(本題6分)如圖,一次函數(shù)y=ax+b的圖像與反比例函數(shù)的圖像交于M、N兩點(diǎn)。
求:(1)反比例函數(shù)與一次函數(shù)的解析式。
(2)根據(jù)圖像寫出反比例函數(shù)的值不小于一次函數(shù)的值的x的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com