一個(gè)直角三角形的三邊長(zhǎng)是不大于10的三個(gè)連續(xù)偶數(shù),則它的周長(zhǎng)是________________.
24
根據(jù)勾股定理,兩直角邊的平方和等于斜邊的平方,設(shè)其中一條直角邊為x,另兩條分別為(x-2),(x+2),則有(x-2)2+x2=(x+2)2,解得x=0或x=8,x=0不合題意舍去,所以三邊長(zhǎng)為6、8、10,周長(zhǎng)為24.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,圖1和圖2都是7×4正方形網(wǎng)格,每個(gè)小正方形的邊長(zhǎng)為l,請(qǐng)按要求畫(huà)出下列圖形,所畫(huà)圖形的各個(gè)頂點(diǎn)均在所給小正方形的頂點(diǎn)上.
(1)在圖1中畫(huà)出一個(gè)等腰直角三角形ABC;

(2)在圖2中畫(huà)出一個(gè)鈍角三角形ABD,使△ABD的面為3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在△ABC中,∠ACB=52°,點(diǎn)D,E分別是AB,AC的中點(diǎn).若點(diǎn)F在線段DE上,且∠AFC=90°,則∠FAE的度數(shù)為     °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xoy中,等腰三角形ABC的三個(gè)頂點(diǎn)A(0,1),點(diǎn)B在x軸的正半軸上,∠ABO=30°,點(diǎn)C在y軸上.

(1)直接寫(xiě)出點(diǎn)C的坐標(biāo)為                    ;
(2)點(diǎn)P關(guān)于直線AB的對(duì)稱點(diǎn)P′在x軸上,AP=1,在圖中標(biāo)出點(diǎn)P的位置并說(shuō)明理由;
(3)在(2)的條件下,在y軸上找到一點(diǎn)M,使PM+BM的值最小,則這個(gè)最小值為         

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知AD是△ABC的BC邊上的高,下列能使△ABD≌△ACD的條件是 (  )
A.AB=AC
B.∠BAC=90°
C.BD=AC
D.∠B=45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

為估計(jì)池塘岸邊、兩點(diǎn)的距離,小方在池塘的一側(cè)選取一點(diǎn)O(如圖),測(cè)得OA=15米,OB=10米,A、B間的距離不可能是( 。

A.5米     B.10米     C.15米     D.20米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:a、b、c為△ABC的三邊,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:∵a2c2-b2c2=a4-b4,①
∴c2(a2-b2)=(a2+b2)(a2-b2).②
∴c2=a2+b2.③
∴△ABC是直角三角形.
問(wèn):
(1)在上述解題過(guò)程中,從哪一步開(kāi)始出現(xiàn)錯(cuò)誤?請(qǐng)寫(xiě)出該步的代號(hào): ______________;
(2)錯(cuò)誤的原因?yàn)開(kāi)_______________________________;
(3)本題正確的解題過(guò)程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列是勾股數(shù)的一組是
A.4,5,6B.5,7,12C.12,13,15D.21,28,35

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知a,b,c是三角形的三邊長(zhǎng),化簡(jiǎn):|a-b+c|-|a-b-c|=__________.

查看答案和解析>>

同步練習(xí)冊(cè)答案