【題目】在正方形ABCD中,點(diǎn)EBC邊上一點(diǎn)且CE=2BE,點(diǎn)F為對(duì)角線BD上一點(diǎn)且BF=2DF,連接AEBD于點(diǎn)G,過點(diǎn)FFHAE于點(diǎn)H,連結(jié)CH、CF,若HG=2cm,則CHF的面積是______cm2

【答案】

【解析】

如圖,過FFIBCI,連接FE,FA,得到FICD,設(shè)BE=EI=IC=a,CE=FI=2a,AB=3a,由勾股定理得到FE=FC=FA=a,推出HE=AE=a,根據(jù)正方形的性得到BG平分∠ABC,由三角形角平分線定理得到,求得HG=AE=a=2,于是得到結(jié)論.

解:如圖,過FFIBCI,連接FE,FA,

FICD,

CE=2BE,BF=2DF

∴設(shè)BE=EI=IC=a,CE=FI=2a,AB=3a

∴則FE=FC=FA=a,

HAE的中點(diǎn),

HE=AE=a

∵四邊形ABCD是正方形,

BG平分∠ABC

HG=AE=a=2,

a=

SCHF=SHEF+SCEF-SCEH=a2+2a2a-2aa=a2=,

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有四張質(zhì)地均勻,大小完全相同的卡片,在其正面分別標(biāo)有數(shù)字﹣1,﹣2,2,3,把卡片背面朝上洗勻,從中隨機(jī)抽出一張后,不放回,再從中隨機(jī)抽出一張,則兩次抽出的卡片所標(biāo)數(shù)字之和為正數(shù)的概率為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校想了解學(xué)生每周的課外閱讀時(shí)間情況,隨機(jī)調(diào)查了部分學(xué)生,對(duì)學(xué)生每周的課外閱讀時(shí)間x單位:小時(shí)進(jìn)行分組整理,并繪制了如圖所示的不完整的頻數(shù)分別直方圖和扇形統(tǒng)計(jì)圖:

根據(jù)圖中提供的信息,解答下列問題:

1補(bǔ)全頻數(shù)分布直方圖

2求扇形統(tǒng)計(jì)圖中m的值和E組對(duì)應(yīng)的圓心角度數(shù)

3請(qǐng)估計(jì)該校3000名學(xué)生中每周的課外閱讀時(shí)間不小于6小時(shí)的人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘,在整個(gè)步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時(shí)間t(分)之間的關(guān)系如圖所示,下列結(jié)論:

甲步行的速度為60米/分;

乙走完全程用了32分鐘;

乙用16分鐘追上甲;

乙到達(dá)終點(diǎn)時(shí),甲離終點(diǎn)還有300米

其中正確的結(jié)論有(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景:在中,邊上的動(dòng)點(diǎn)運(yùn)動(dòng)(與不重合),點(diǎn)與點(diǎn)同時(shí)出發(fā),由點(diǎn)沿的延長線方向運(yùn)動(dòng)(不與重合),連結(jié)于點(diǎn),點(diǎn)是線段上一點(diǎn).

1)初步嘗試:如圖,若是等邊三角形,,且點(diǎn)的運(yùn)動(dòng)速度相等,求證:.

小王同學(xué)發(fā)現(xiàn)可以由以下兩種思路解決此問題:

思路一:過點(diǎn),交于點(diǎn),先證,再證,從而證得結(jié)論成立;

思路二:過點(diǎn),交的延長線于點(diǎn),先證,再證,從而證得結(jié)論成立.

請(qǐng)你任選一種思路,完整地書寫本小題的證明過程(如用兩種方法作答,則以第一種方法評(píng)分)

2)類比探究:如圖,若在中,,,且點(diǎn)的運(yùn)動(dòng)速度之比是,求的值;

3)延伸拓展:如圖,若在中,,,記,且點(diǎn)、的運(yùn)動(dòng)速度相等,試用含的代數(shù)式表示(直接寫出結(jié)果,不必寫解答過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,C=90°ABC的平分線交AC于點(diǎn)E,過點(diǎn)EBE的垂線交AB于點(diǎn)FOBEF的外接圓.

1)求證:ACO的切線;

2)過點(diǎn)EEHAB,垂足為H,求證:CD=HF;

3)若CD=1EH=3,求BFAF長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)紅色不透明的盒子中放有四張分別寫有數(shù)字12,3,4的紅色卡片,在一個(gè)藍(lán)色不透明的盒子中放有三張分別寫有數(shù)字1,23的藍(lán)色卡片,卡片除顏色和數(shù)字外完全相同.

1)從紅盒中任意抽取一張紅色卡片,從藍(lán)盒中任意抽取一張藍(lán)色卡片,用列舉法(樹形圖或列表法)表示所有的可能情況;

2)求兩張卡片上寫有相同數(shù)字的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在正方形中,點(diǎn)的中點(diǎn),點(diǎn)是對(duì)角線上一動(dòng)點(diǎn),設(shè)的長度為的長度和為,圖②是關(guān)于的函數(shù)圖象,則圖象上最低點(diǎn)的坐標(biāo)為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一張正方形紙的內(nèi)部被針扎了2010個(gè)孔,這些孔和正方形的頂點(diǎn)之中的任何3點(diǎn)都不共線.作若干條互不相交的線段,它們的端點(diǎn)都是這些孔或正方形的頂點(diǎn),這些線段將正方形分割成一些三角形,并且在這些三角形的內(nèi)部和邊上都不再有小孔.請(qǐng)問一共作了多少條線段?共得到了多少個(gè)三角形?

查看答案和解析>>

同步練習(xí)冊(cè)答案