【題目】如圖1,在矩形ABCD中,P為CD邊上一點(DP<CP),∠APB=90°.將△ADP沿AP翻折得到△AD′P,PD′的延長線交邊AB于點M,過點B作BN∥MP交DC于點N.
(1)求證:AD2=DPPC;
(2)請判斷四邊形PMBN的形狀,并說明理由;
(3)如圖2,連接AC,分別交PM,PB于點E,F(xiàn).若=,求的值.
【答案】(1)證明見解析;(2)四邊形PMBN是菱形,理由見解析;(3)
【解析】(1)過點P作PG⊥AB于點G,易知四邊形DPGA,四邊形PCBG是矩形,所以AD=PG,DP=AG,GB=PC,易證△APG∽△PBG,所以PG2=AGGB,即AD2=DPPC;
(2)DP∥AB,所以∠DPA=∠PAM,由題意可知:∠DPA=∠APM,所以∠PAM=∠APM,由于∠APB-∠PAM=∠APB-∠APM,即∠ABP=∠MPB,從而可知PM=MB=AM,又易證四邊形PMBN是平行四邊形,所以四邊形PMBN是菱形;
(3)由于,可設(shè)DP=k,AD=2k,由(1)可知:AG=DP=k,PG=AD=2k,從而求出GB=PC=4k,AB=AG+GB=5k,由于CP∥AB,從而可證△PCF∽△BAF,△PCE∽△MAE,從而可得,,從而可求出EF=AF-AE=AC-AC=AC,從而可得.
(1)過點P作PG⊥AB于點G,
∴易知四邊形DPGA,四邊形PCBG是矩形,
∴AD=PG,DP=AG,GB=PC
∵∠APB=90°,
∴∠APG+∠GPB=∠GPB+∠PBG=90°,
∴∠APG=∠PBG,
∴△APG∽△PBG,
∴,
∴PG2=AGGB,
即AD2=DPPC;
(2)∵DP∥AB,
∴∠DPA=∠PAM,
由題意可知:∠DPA=∠APM,
∴∠PAM=∠APM,
∵∠APB-∠PAM=∠APB-∠APM,
即∠ABP=∠MPB
∴AM=PM,PM=MB,
∴PM=MB,
又易證四邊形PMBN是平行四邊形,
∴四邊形PMBN是菱形;
(3)由于,
可設(shè)DP=k,AD=2k,
由(1)可知:AG=DP=k,PG=AD=2k,
∵PG2=AGGB,
∴4k2=kGB,
∴GB=PC=4k,
AB=AG+GB=5k,
∵CP∥AB,
∴△PCF∽△BAF,
∴,
∴,
又易證:△PCE∽△MAE,AM=AB=,
∴
∴,
∴EF=AF-AE=AC-AC=AC,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在綜合實踐課上,小聰所在小組要測量一條河的寬度,如圖,河岸EF∥MN,小聰在河岸MN上點A處用測角儀測得河對岸小樹C位于東北方向,然后沿河岸走了30米,到達B處,測得河對岸電線桿D位于北偏東30°方向,此時,其他同學(xué)測得CD=10米.請根據(jù)這些數(shù)據(jù)求出河的寬度.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D、E分別是AB、AC的中點,連接CD,過E作EF∥DC交BC的延長線于F若平行四邊形CDEF的周長是25cm,AC的長為5cm,則的長是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次“尋寶”游戲中,“尋寶”人在如圖23-6-9所示的藏寶圖中找到了兩個標(biāo)志點A(2,3),B(4,1),A,B兩點到“寶藏”點的距離相等,則“寶藏”點的可能坐標(biāo)是________(填一個即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=8,點E是BC的中點,點P為對角線BD上的動點,設(shè)BP=t(t>0),作PH⊥BC于點H,連接EP并延長至點F,使得PF=PE,作點F關(guān)于BD的對稱點G,FG交BD于點Q,連接GH,GE.
(1)求證:EG∥PQ;
(2)當(dāng)點P運動到對角線BD中點時,求△EFG的周長;
(3)在點P的運動過程中,△GEH是否可以為等腰三角形?若可以,求出t的值;若不可以,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】央視熱播節(jié)目“朗讀者”激發(fā)了學(xué)生的閱讀興趣,某校為滿足學(xué)生的閱讀需求,欲購進一批學(xué)生喜歡的圖書,學(xué)校組織學(xué)生會成員隨機抽取部分學(xué)生進行問卷調(diào)查,被調(diào)查學(xué)生須從“文史類、社科類、小說類、生活類”中選擇自己喜歡的一類,根據(jù)調(diào)查結(jié)果繪制了統(tǒng)計圖(未完成),請根據(jù)圖中信息,解答下列問題:
(1)此次共調(diào)查了 名學(xué)生;
(2)將條形統(tǒng)計圖1補充完整;
(3)圖2中“小說類”所在扇形的圓心角為 度;
(4)若該校共有學(xué)生2000人,估計該校喜歡“社科類”書籍的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,已知AB=CD,M、N、P分別是AD、BC、BD的中點∠ABD=20°,∠BDC=70°,則∠NMP的度數(shù)為( 。
A. 50° B. 25° C. 15° D. 20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線m:y=kx(k>0)與直線n:相交于點C,點A、B為直線n與坐標(biāo)軸的交點,∠COA=60°,點P從O點出發(fā)沿線段OC向點C勻速運動,速度為每秒1個單位,同時點Q從點A出發(fā)沿線段AO向點O勻速運動,速度為每秒2個單位,設(shè)運動時間為t秒.
(1)k= ;
(2)記△POQ的面積為S,求t為何值時S取得最大值;
(3)當(dāng)△POQ的面積最大時,以PQ為直徑的圓與直線n有怎樣的位置關(guān)系,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的布袋里裝有4個大小,質(zhì)地都相同的乒乓球,球面上分別標(biāo)有數(shù)字1,-2,3,-4,小明先從布袋中隨機摸出一個球(不放回去),再從剩下的3個球中隨機摸出第二個乒乓球.
(1)共有 種可能的結(jié)果.
(2)請用畫樹狀圖或列表的方法求兩次摸出的乒乓球的數(shù)字之積為偶數(shù)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com