【題目】如圖,在邊長為2的菱形ABCD中, ∠ABC=120°, E,F分別為AD,CD上的動點,且AE+CF=2,則線段EF長的最小值是 .
【答案】
【解析】解:∵菱形ABCD的邊長為2,∠ABC=120°,
∴AB=AD=CD=BC=2,∠ABD=∠CBD=60°,
∴△ABD與△BCD都是等邊三角形,
∴BD=BC=2,∠BDE=∠C=60°,
∵AE+CF=2,
∴CF=2-AE,
又∵DE=AD-AE=2-AE,
∴DE=CF,
在△BDE和△BCF中,
|
∴△BDE≌△BCF(SAS),
∴BE=BF,∠EBD=∠FBC ,
∴∠EBF=∠CBD=60°,
∴△BEF是等邊三角形,
∴EF=BF.
當BF⊥CD,BF有最小值,即為CD上的高,.
所以答案是.
【考點精析】解答此題的關(guān)鍵在于理解菱形的性質(zhì)的相關(guān)知識,掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,等腰直角三角形OA1A2的直角邊OA1在y軸的正半軸上,且OA1=A1A2=1,以O(shè)A2為直角邊作第二個等腰直角三角形OA2A3 , 以O(shè)A3為直角邊作第三個等腰直角三角形OA3A4 , …,依此規(guī)律,得到等腰直角三角形OA2017A2018 , 則點A2017的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】烏江快鐵大橋是快鐵渝黔線的一項重要工程,由主橋AB和引橋BC兩部分組成(如圖所示),建造前工程師用以下方式做了測量;無人機在A處正上方97m處的P點,測得B處的俯角為30°(當時C處被小山體阻擋無法觀測),無人機飛行到B處正上方的D處時能看到C處,此時測得C處俯角為80°36′.
(長度均精確到1m,參考數(shù)據(jù): ≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)
(1)求主橋AB的長度;
(2)若兩觀察點P、D的連線與水平方向的夾角為30°,求引橋BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB的一邊OA為平面鏡,∠AOB=38°,在OB上有一點E , 從E點射出一束光線經(jīng)OA上一點D反射,反射光線DC恰好與OB平行,則∠DEB的度數(shù)是( )
A.76°
B.52°
C.45°
D.38°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】嘉興教育學院大學生小王利用暑假開展了30天的社會實踐活動,參與了嘉興浙北超市的經(jīng)營,了解到某成本為15元/件的商品在x天銷售的相關(guān)信息,如表表示:
銷售量p(件) | P=45﹣x |
銷售單價q(元/件) | 當1≤x≤18時,q=20+x |
設(shè)該超市在第x天銷售這種商品獲得的利潤為y元.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)在這30天中,該超市銷售這種商品第幾天的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某網(wǎng)店嘗試用單價隨天數(shù)而變化的銷售模式銷售一種商品,利用30天的時間銷售一種成本為10元/件的商品售后,經(jīng)過統(tǒng)計得到此商品單價在第x天(x為正整數(shù))銷售的相關(guān)信息,如表所示:
銷售量n(件) | n=50﹣x |
銷售單價m(元/件) | 當1≤x≤20時, |
當21≤x≤30時, |
(1)請計算第15天該商品單價為多少元/件?
(2)求網(wǎng)店銷售該商品30天里所獲利潤y(元)關(guān)于x(天)的函數(shù)關(guān)系式;
(3)這30天中第幾天獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知P是拋物線y2=4x上的動點,Q在圓C:(x+3)2+(y﹣3)2=1上,R是P在y軸上的射影,則|PQ|+|PR|的最小值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣a(a∈R)與函數(shù) 有公共切線. (Ⅰ)求a的取值范圍;
(Ⅱ)若不等式xf(x)+e>2﹣a對于x>0的一切值恒成立,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知斜三棱柱ABC﹣A1B1C1 的側(cè)面 A1ACC1與底面ABC垂直,∠ABC=90°,BC=2,AC=2 ,且AA1⊥A1C,AA1=A1C.
(1)求側(cè)棱A1A與底面ABC所成角的大。
(2)求側(cè)面A1ABB1與底面ABC所成二面角的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com