(滿分l2分)學(xué)完“等邊三角形”這一節(jié)后,老師布置了一道思考題:
如圖,點(diǎn)M,N分別在正三角形ABC的BC,CA邊上,且BM=CN,AM,BN交于點(diǎn)Q.
求證:∠BQM=60°.
(1)請(qǐng)你完成這道思考題;
(2)做完(1)后,同學(xué)們?cè)诶蠋煹膯l(fā)下進(jìn)行了反思,提出了許多問題,如:
①若將題中“BM=CN”與“∠BQM=60°”的位置交換,得到的是否仍是真命題?
②若將題中的點(diǎn)M,N分別移動(dòng)到BC,CA的延長線上,是否仍能得到∠BQM=60°?
③若將題中的條件“點(diǎn)M,N分別在正三角形ABC的BC,CA邊上”改為“點(diǎn)M,N分別在正方形ABCD的BC,CD邊上”,是否仍能得到∠BQM=60°?
請(qǐng)你作出判斷,在下列橫線上填寫“是”或“否”:①______;②______;③______.并對(duì)②,③的判斷,選擇一個(gè)給出證明.
(1)證明:∵BM=CN,∠ABM=∠BCN,AB=BC.
∴△ABM≌△BCN.∴∠BAM=∠CBN.
∴∠BQM=∠BAM+∠ABQ=∠CBN+∠ABQ=60° ……4分
(2)①是;②是;③否. ……7分
②的證明:如圖D4-2,
∵∠ACM=∠BAN=120°,CM=AN,AC=AB,
∴△ACM≌△BAN.∴∠AMC=∠BNA.
∴∠NQA=∠NBC+∠BMQ∴∠NBC+∠BNA=180°-60°=l20°.
∴∠BQM=60°.
③的證明:如圖D4—3,
∵BM=CN,AB=BC,
∴Rt△ABM≌Rt△BCN.
∴∠AMB=∠BNC.又∠NBM+∠BNC=90°,
∴∠QBM+∠QMB=90°.
∴∠BQM=90°,即∠BQM≠60°. ……l2分
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com