如圖,在梯形ABCD中,AD∥BC,AB=DC,過點(diǎn)D作DE⊥BC,垂足為E,并延長DE至F,使EF=DE.連接BF、CF、AC.求證:四邊形ABFC是平行四邊形.

【答案】分析:根據(jù)等腰梯形性質(zhì)求出∠ABC=∠DCB,根據(jù)DE⊥BC,DE=EF,得出△DFC是等腰三角形,推出∠ABC=∠DCB=∠FCE,AB=CD=CF,推出AB∥CF,根據(jù)平行四邊形的判定定理推出即可.
解答:證明:等腰梯形ABCD中,AB=DC,
∴∠ABC=∠DCB,
∵DE⊥BC,DE=EF,
∴△DFC是等腰三角形,
∴∠DCB=∠FCE,DC=CF,
∴∠ABC=∠FCE,
∴AB∥CF,
∵AB=CD=CF,
∴四邊形ABFC是平行四邊形.
點(diǎn)評:本題考查了等腰梯形的性質(zhì),等腰三角形的性質(zhì)和判定,平行線的判定等知識(shí)點(diǎn)的應(yīng)用,關(guān)鍵是推出AB=CF,AB∥CF,通過做此題培養(yǎng)了學(xué)生分析問題和解決問題的能力,題目比較典型,難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對角線AC、BD交于點(diǎn)O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點(diǎn)E,這個(gè)梯形的面積為21cm2,周長為20cm,那么半圓O的半徑為( 。
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習(xí)冊答案