【題目】如圖,在中,,上一動(dòng)點(diǎn),

1的長(zhǎng)____________;

2的最小值是___________.

【答案】

【解析】

1)過(guò)點(diǎn)BBEAC于點(diǎn)E,根據(jù)等腰三角形的性質(zhì)得出AE=CE=AC,再根據(jù)利用銳角三角函數(shù)即可求得.

2)過(guò)點(diǎn)BBEAC于點(diǎn)E,延長(zhǎng)BEM使BE=ME,過(guò)M點(diǎn)作MNBCN,交AC于點(diǎn)D,則點(diǎn)D即為所求,再根據(jù)垂直平分線的性質(zhì)和銳角三角函數(shù)求出MN的長(zhǎng)即可.

1)解:過(guò)點(diǎn)BBEAC于點(diǎn)E,

AC=2AE,

RtABE中,∠HEB=90°,

AE=ABcos=4=2,BE=2

AC=4

故答案為:4

2)過(guò)點(diǎn)BBEAC于點(diǎn)E,延長(zhǎng)BEM使BE=ME,過(guò)M點(diǎn)作MNBCN,交AC于點(diǎn)D,連接DB,則的最小.

MNBC,∴∠CND=90°,

,∴DN=CD

BEAC,BE=ME

BD=MD,

BEAC,

∴∠CBM=60°,

BM=2BE=4RtBMN中,MN=BMsin60°=4=2

的最小值為2

故答案為:2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)軸于點(diǎn),交軸于點(diǎn),在軸上有一點(diǎn),連接.

(1)求二次函數(shù)的表達(dá)式;

(2)若點(diǎn)為拋物線在軸負(fù)半軸上方的一個(gè)動(dòng)點(diǎn),求面積的最大值;

(3)拋物線對(duì)稱軸上是否存在點(diǎn),使為等腰三角形,若存在,請(qǐng)直接寫出所有點(diǎn)的坐標(biāo),若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,

1)如圖①,點(diǎn)在斜邊上,以點(diǎn)為圓心,長(zhǎng)為半徑的圓交于點(diǎn),交于點(diǎn),與邊相切于點(diǎn).求證:

2)在圖②中作,使它滿足以下條件:

①圓心在邊上;②經(jīng)過(guò)點(diǎn);③與邊相切.

(尺規(guī)作圖,只保留作圖痕跡,不要求寫出作法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)B(-1,4),點(diǎn)A(-7,0),點(diǎn)P是直線上一點(diǎn),且∠ABP=45°,則點(diǎn)P的坐標(biāo)為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了提高學(xué)生的閱讀能力,我市某校開(kāi)展了“讀好書,助成長(zhǎng)”的活動(dòng),并計(jì)劃購(gòu)置一批圖書,購(gòu)書前,對(duì)學(xué)生喜歡閱讀的圖書類型進(jìn)行了抽樣調(diào)查,并將調(diào)查數(shù)據(jù)繪制成兩幅不完整的統(tǒng)計(jì)圖,如圖所示,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答下列問(wèn)題:

1)本次調(diào)查共抽取了 名學(xué)生,兩幅統(tǒng)計(jì)圖中的m ,n

2)已知該校共有3600名學(xué)生,請(qǐng)你估計(jì)該校喜歡閱讀“A”類圖書的學(xué)生約有多少人?

3)學(xué)校將舉辦讀書知識(shí)競(jìng)賽,九年級(jí)1班要在本班3名優(yōu)勝者(21女)中隨機(jī)選送2人參賽,請(qǐng)用列表或畫樹(shù)狀圖的方法求被選送的兩名參賽者為一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的最大值為4,且該拋物線與軸的交點(diǎn)為,頂點(diǎn)為.

1)求該二次函數(shù)的解析式及點(diǎn),的坐標(biāo);

2)點(diǎn)軸上的動(dòng)點(diǎn),

的最大值及對(duì)應(yīng)的點(diǎn)的坐標(biāo);

②設(shè)軸上的動(dòng)點(diǎn),若線段與函數(shù)的圖像只有一個(gè)公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,點(diǎn)在邊上,,.點(diǎn)是線段上一動(dòng)點(diǎn),當(dāng)半徑為6的圓的一邊相切時(shí),的長(zhǎng)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】箭頭四角形,模型規(guī)律:如圖1,延長(zhǎng)COAB于點(diǎn)D,則.因?yàn)榘妓倪呅?/span>ABOC形似箭頭,其四角具有“”這個(gè)規(guī)律,所以我們把這個(gè)模型叫做“箭頭四角形”.模型應(yīng)用:

1)直接應(yīng)用:

①如圖2,

②如圖3,2等分線(即角平分線)交于點(diǎn)F,已知,則

③如圖4,分別為2019等分線.它們的交點(diǎn)從上到下依次為.已知,則

2)拓展應(yīng)用:如圖5,在四邊形ABCD中,O是四邊形ABCD內(nèi)一點(diǎn),且.求證:四邊形OBCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道,各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形.對(duì)一個(gè)各條邊都相等的凸多邊形(邊數(shù)大于3),可以由若干條對(duì)角線相等判定它是正多邊形.例如,各條邊都相等的凸四邊形,若兩條對(duì)角線相等,則這個(gè)四邊形是正方形.

1)已知凸五邊形的各條邊都相等.

①如圖1,若,求證:五邊形是正五邊形;

②如圖2,若,請(qǐng)判斷五邊形是不是正五邊形,并說(shuō)明理由:

2)判斷下列命題的真假.(在括號(hào)內(nèi)填寫

如圖3,已知凸六邊形的各條邊都相等.

①若,則六邊形是正六邊形;(   

②若,則六邊形是正六邊形.    

查看答案和解析>>

同步練習(xí)冊(cè)答案