【題目】如圖,在矩形OABC中,OA3,OC4,分別以OAOC所在直線(xiàn)為x軸、y軸,建立平面直角坐標(biāo)系,D是邊CB上的一個(gè)動(dòng)點(diǎn)(不與C、B重合),反比例函數(shù)yk0)的圖象經(jīng)過(guò)點(diǎn)D且與邊BA交于點(diǎn)E,作直線(xiàn)DE

1)當(dāng)點(diǎn)D運(yùn)動(dòng)到BC中點(diǎn)時(shí),求k的值;

2)求的值;

3)連接DA,當(dāng)DAE的面積為時(shí),求k值.

【答案】1k6;(2;(3)當(dāng)△DAE的面積為時(shí),k的值為48

【解析】

1)由OA,OC的長(zhǎng)度結(jié)合矩形的性質(zhì)可得出BC的長(zhǎng)度及點(diǎn)B的坐標(biāo),根據(jù)點(diǎn)D為邊BC的中點(diǎn)可得出CD的長(zhǎng)度,進(jìn)而可得出點(diǎn)D的坐標(biāo),再利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出k值;

2)由OAOC的長(zhǎng)度利用反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)D,E的坐標(biāo),進(jìn)而可得出BD,BE的長(zhǎng)度,二者相比后即可得出的值;

3)由(2)可得出AEBD的長(zhǎng)度,由三角形的面積公式結(jié)合SDAE即可得出關(guān)于k的一元二次方程,解之即可得出k值.

1)∵OA3,OC4,四邊形OABC為矩形,

BCOA3,點(diǎn)B的坐標(biāo)為(3,4).

∵點(diǎn)D為邊BC的中點(diǎn),

CDBC,

∴點(diǎn)D的坐標(biāo)為(,4).

又∵點(diǎn)D在反比例函數(shù)yk0)的圖象上,

k×46

2)∵點(diǎn)D,E在反比例函數(shù)yk0)的圖象上,

∴點(diǎn)D的坐標(biāo)為(,4),點(diǎn)E的坐標(biāo)為(3).

又∵點(diǎn)B的坐標(biāo)為(3,4),

BD3,BE4,

3)由(2)可知:AE,BD3

SDAEAEBD××3)=,

整理,得:k212k+320

解得:k14,k28,

∴當(dāng)DAE的面積為時(shí),k的值為48

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù) y=﹣x+4 的圖象與反比例 y=k 為常數(shù), k≠0)的圖象交于 A(1,a)、Bb,1)兩點(diǎn).

(1)求點(diǎn) AB 的坐標(biāo)及反比例函數(shù)的表達(dá)式;

(2) x 軸上找一點(diǎn)使 PA+PB 的值最小,求滿(mǎn)足條件的點(diǎn) P 的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)y=k1x+bk1≠0)與雙曲線(xiàn)k2≠0)相交于A1,2)、Bm,﹣1)兩點(diǎn).

1)求直線(xiàn)和雙曲線(xiàn)的解析式;

2)若A1x1,y1),A2x2y2),A3x3,y3)為雙曲線(xiàn)上的三點(diǎn),且x10x2x3,請(qǐng)直接寫(xiě)出y1,y2,y3的大小關(guān)系式;

3)觀察圖象,請(qǐng)直接寫(xiě)出不等式k1x+b的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)長(zhǎng)為4cm,寬為3cm的長(zhǎng)方形木板在桌面上做無(wú)滑動(dòng)的翻滾(順時(shí)針?lè)较颍,木板點(diǎn)A位置的變化為A→Al→A2,其中第二次翻滾被面上一小木塊擋住,使木板與桌面成30°的角,則點(diǎn)A滾到A2位置時(shí)共走過(guò)的路徑長(zhǎng)為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,下列說(shuō)法不正確的是(   )

A. 當(dāng)AC=BD時(shí),四邊形ABCD是矩形

B. 當(dāng)AB=BC時(shí),四邊形ABCD是菱形

C. 當(dāng)AC⊥BD時(shí),四邊形ABCD是菱形

D. 當(dāng)∠DAB=90°時(shí),四邊形ABCD是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,函數(shù)y=﹣x與函數(shù)y=﹣的圖象相交于A,B兩點(diǎn),過(guò)A,B兩點(diǎn)分別作y軸的垂線(xiàn),垂足分別為點(diǎn)C,D.則四邊形ACBD的面積為多少?.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)務(wù)院辦公廳在2015316日發(fā)布了《中國(guó)足球發(fā)展改革總體方案》,這是中國(guó)足球史上的重大改革,為進(jìn)一步普及足球知識(shí),傳播足球文化,我市某區(qū)在中小學(xué)舉行了足球在身邊知識(shí)競(jìng)賽,各類(lèi)獲獎(jiǎng)學(xué)生人數(shù)的比例情況如圖所示,其中獲得三等獎(jiǎng)的學(xué)生共50名,請(qǐng)結(jié)合圖中信息,解答下列問(wèn)題:

1)獲得一等獎(jiǎng)的學(xué)生人數(shù);

2)在本次知識(shí)競(jìng)賽活動(dòng)中,A,B,C,D四所學(xué)校表現(xiàn)突出,現(xiàn)決定從這四所學(xué)校中隨機(jī)選取兩所學(xué)校舉行一場(chǎng)足球友誼賽,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法求恰好選到A,B兩所學(xué)校的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了提高學(xué)生學(xué)科能力,決定開(kāi)設(shè)以下校本課程:A.文學(xué)院,B.小小數(shù)學(xué)家,C.小小外交家,D.未來(lái)科學(xué)家,為了解學(xué)生最喜歡哪一項(xiàng)校本課程,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問(wèn)題:

1)這次被調(diào)查的學(xué)生共有   人;

2)請(qǐng)你將條形統(tǒng)計(jì)圖(2)補(bǔ)充完整;

3)在平時(shí)的小小外交家的課堂學(xué)習(xí)中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加全國(guó)英語(yǔ)口語(yǔ)大賽,求恰好同時(shí)選中甲、乙兩位同學(xué)的概率(用樹(shù)狀圖或列表法解答).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)y1=x2+mx+n,直線(xiàn)y2=2x+1,拋物線(xiàn)y1的對(duì)稱(chēng)軸與直線(xiàn)y2的交點(diǎn)為點(diǎn)A,且點(diǎn)A的縱坐標(biāo)為5.

(1)求m的值;

(2)若點(diǎn)A與拋物線(xiàn)y1的頂點(diǎn)B的距離為4,求拋物線(xiàn)y1的解析式;

(3)若拋物線(xiàn)y1與直線(xiàn)y2只有一個(gè)公共點(diǎn),求n的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案