如圖,AB是⊙O的直徑,弦CD⊥AB,∠CDB=30°,CD=2
3
,則陰影部分圖形的面積為( 。
A.4πB.2πC.πD.
3

連接OD.
∵CD⊥AB,
∴CE=DE=
1
2
CD=
3
(垂徑定理),
故S△OCE=S△ODE,
即可得陰影部分的面積等于扇形OBD的面積,
又∵∠CDB=30°,
∴∠COB=60°(圓周角定理),
∴OC=2,
故S扇形OBD=
60π×22
360
=
3
,即陰影部分的面積為
3

故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB是⊙O的直徑,弦AC=2,∠ABC=30°,則圖中陰影部分的面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,∠B=30°,O是BC上一點(diǎn),以點(diǎn)O為圓心,OB長為半徑作圓,恰好經(jīng)過點(diǎn)A,并與BC交于點(diǎn)D.
(1)判斷直線CA與⊙O的位置關(guān)系,并說明理由;
(2)若AB=2
3
,求圖中陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖線段AB的端點(diǎn)在邊長為1的正方形網(wǎng)格的格點(diǎn)上,現(xiàn)將線段AB繞點(diǎn)A按逆時針方向旋轉(zhuǎn)90°得到線段AC.
(1)請你用尺規(guī)在所給的網(wǎng)格中畫出線段AC及點(diǎn)B經(jīng)過的路徑;
(2)若將此網(wǎng)格放在一平面直角坐標(biāo)系中,已知點(diǎn)A的坐標(biāo)為(1,3),點(diǎn)B的坐標(biāo)為(-2,-1),則點(diǎn)C的坐標(biāo)為______;
(3)線段AB在旋轉(zhuǎn)到線段AC的過程中,線段AB掃過的區(qū)域的面積為______;
(4)若有一張與(3)中所說的區(qū)域形狀相同的紙片,將它圍成一個幾何體的側(cè)面,則該幾何體底面圓的半徑長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,把Rt△ABC依次繞頂點(diǎn)沿水平線翻轉(zhuǎn)兩次,若∠C=90°,AC=
3
,BC=1,那么AC邊從開始到結(jié)束所掃過的圖形的面積為(  )
A.
4
B.
12
C.
4
D.
25π
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方形ABCD邊長為4,以BC為直徑的半圓O交對角線BD于E.則直線CD與⊙O的位置關(guān)系是______,陰影部分面積為(結(jié)果保留π)______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,Rt△ABC中,∠ABC=90°,AB=BC=2,以BC為直徑的圓交AC于點(diǎn)D,則圖中陰影部分的面積為( 。
A.2B.1+
π
2
C.1D.2-
π
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖為△ABC與圓O的重疊情形,其中BC為⊙O之直徑.若∠A=70°,BC=2,則圖中灰色區(qū)域的面積為何?( 。
A.
55
360
π
B.
110
360
π
C.
125
360
π
D.
140
360
π

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC中,∠C=90°,AB=6,AC=3,動點(diǎn)P在AB上運(yùn)動,以點(diǎn)P為圓心,PA為半徑畫⊙P交AC于點(diǎn)Q.
(1)比較AP,AQ的大小,并證明你的結(jié)論;
(2)當(dāng)⊙P與BC相切時,求AP的長,并求此時弓形(陰影部分)的面積.

查看答案和解析>>

同步練習(xí)冊答案