已知等腰△ABC中,AD⊥BC于點D,且AD=
1
2
BC,則△ABC底角的度數(shù)為( 。
A.45°B.75°
C.45°或15°或75°D.60°
①如圖1,點A是頂點時,∵AB=AC,AD⊥BC,
∴BD=CD,
∵AD=
1
2
BC,
∴AD=BD=CD,
在Rt△ABD中,∠B=∠BAD=
1
2
(180°-90°)=45°;
②如圖2,點A是底角頂點,且AD在△ABC外部時,
∵AD=
1
2
BC,AC=BC,
∴AD=
1
2
AC,
∴∠ACD=30°,
∴∠BAC=∠ABC=
1
2
×30°=15°;
③如圖3,點A是底角頂點,且AD在△ABC內(nèi)部時,
∵AD=
1
2
BC,AC=BC,
∴AD=
1
2
AC,
∴∠C=30°,
∴∠BAC=∠ABC=
1
2
(180°-30°)=75°;
綜上所述,△ABC底角的度數(shù)為45°或15°或75°.
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,∠BAC=30°,分別以AB、AC為邊向形外作兩個等腰直角三角形ABD和ACE,使∠BAD=∠CAE=90°.
(1)求∠DBC的度數(shù);
(2)求證:BD=CE;
(3)若連接BE、CD,試判斷BE、CD是否相等,并對結(jié)論給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四邊形ABCD中,∠ABC=∠ADC=90°,M、N分別是AC、BD的中點,試說明:
(1)MD=MB;
(2)MN⊥BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB⊥BC,AB=BC=2cm,
OA
OC
關(guān)于點O中心對稱,則AB、BC、
CO
、
OA
所圍成的圖形的面積是______cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,∠ACB是Rt∠,CD是斜邊AB上的中線,CD=2.5,BC=3,則AC=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,每個小正方形的邊長為1,A,B,C是小正方形的頂點,連接AB,BC,則∠ABC的度數(shù)為( 。
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在Rt△ABC中,CD是斜邊AB上的中線,則圖中與CD相等的線段有( 。
A.AD與BDB.BD與BCC.AD與BCD.AD、BD與BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,∠BAC=90°,AB=AC,AE是經(jīng)過A點的一條直線,且B,C在AE的兩側(cè),BD⊥AE于D,CE⊥AE于E,CE=2,BD=6,則DE的長為( 。
A.2B.3C.5D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在直角三角形ABC中,∠CAB=90°,∠ABC=72°,AD是∠CAB的角平分線,交邊BC于點D,過點C作△ACD中AD邊上的高線CE,則∠ECD的度數(shù)為( 。
A.63°B.45°C.27°D.18°

查看答案和解析>>

同步練習(xí)冊答案