已知:如圖,平行四邊形ABCD兩條對角線AC、BD相交于點O,過O作一直線分別交AD、BC于點M、N,
求證:OM=ON.

【答案】分析:根據(jù)平行四邊形的對角線互相平分可得OA=OC,再根據(jù)平行四邊形的對邊平行可得AD∥BC,利用兩直線平行,內(nèi)錯角相等可得∠MAO=∠NCO,然后利用“角邊角”證明△AMO和△CNO全等,根據(jù)全等三角形對應(yīng)邊相等即可得證.
解答:證明:平行四邊形ABCD中,OA=OC,AD∥BC,
∴∠MAO=∠NCO,
在△AMO和△CNO中,,
∴△AMO≌△CNO(ASA),
∴OM=ON.
點評:本題考查了平行四邊形的對角線互相平分,對邊平行的性質(zhì),全等三角形的判定與性質(zhì),比較簡單.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(本題滿分6分)已知:如圖,E、F是平行四邊行ABCD的對角線AC上的兩點,AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題滿分6分)已知:如圖,E、F是平行四邊行ABCD的對角線AC上的兩點,AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

查看答案和解析>>

科目:初中數(shù)學 來源:2010-2011學年江蘇省江陰市夏港中學九年級第二學期期中考試數(shù)學卷 題型:解答題

(本題滿分6分)已知:如圖,E、F是平行四邊行ABCD的對角線AC上的兩點,AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年山東省九年級上學期階段檢測數(shù)學卷(解析版) 題型:解答題

已知:如圖,E、F是平行四邊行ABCD的對角線AC上的兩點,AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

【解析】要證△ADF≌△CBE,因為AE=CF,則兩邊同時加上EF,得到AF=CE,又因為ABCD是平行四邊形,得出AD=CB,∠DAF=∠BCE,從而根據(jù)SAS推出兩三角形全等,由全等可得到∠DFA=∠BEC,所以得到DF∥EB

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011屆江蘇省江陰市九年級第二學期期中考試數(shù)學卷 題型:解答題

(本題滿分6分)已知:如圖,E、F是平行四邊行ABCD的對角線AC上的兩點,AE=CF。

求證:(1)△ADF≌△CBE;(2)EB∥DF。

 

查看答案和解析>>

同步練習冊答案