已知:如圖,在△ABC中,AB=AC=a,M為底邊BC上任意一點(diǎn),過點(diǎn)M分別作AB,AC的平行線交AC于P,交AB于Q.
(1)求四邊形AQMP的周長(zhǎng);
(2)寫出圖中的兩對(duì)相似三角形.(不需證明)
(1)∵PMAB,QMAC,
∴四邊形AQMP為平行四邊形.
∴∠BMQ=∠C,∠CMP=∠B.
又∵AB=AC=a,
∴∠B=∠C.
∴∠BMQ=∠B=∠C=∠CMP.
∴QB=QM,PM=PC.
∴四邊形AQMP的周長(zhǎng)為:AQ+QM+MP+PA=AP+QB+PC+PA=AB+AC=2a.

(2)△ABC△QBM△PMC(三對(duì)中寫出任意兩對(duì)即可).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

直角三角形的周長(zhǎng)為2+
6
,斜邊上的中線長(zhǎng)為1,則該三角形的面積等于(  )
A.1B.
1
2
C.
1
4
D.
3
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

等腰三角形的周長(zhǎng)為16,且邊長(zhǎng)為整數(shù),則腰與底邊分別為( 。
A.5,6B.6,4
C.7,2D.以上三種情況都有可能

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC于M,連CD.下列結(jié)論:①AC+CE=AB;②CD=
1
2
AE
;③∠CDA=45°;④
AC+AB
AM
=定值.
其中正確的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△ABC中,AB=AC,∠BAD=15°,且AE=AD,則∠CDE=______°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖△ABC中,AB=AC,角平分線AD、BD相交于點(diǎn)D.若∠ABC=80°,則∠ADB等于( 。
A.100°B.110°C.120°D.130°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直角坐標(biāo)系中,已知點(diǎn)A(2,4),B(5,0),動(dòng)點(diǎn)P從B點(diǎn)出發(fā)沿BO向終點(diǎn)O運(yùn)動(dòng),動(dòng)點(diǎn)Q從A點(diǎn)出發(fā)沿AB向終點(diǎn)B運(yùn)動(dòng).兩點(diǎn)同時(shí)出發(fā),速度均為每秒1個(gè)單位,設(shè)從出發(fā)起運(yùn)動(dòng)了xs.
(1)Q點(diǎn)的坐標(biāo)為______(用含x的代數(shù)式表示);
(2)當(dāng)x為何值時(shí),△APQ是一個(gè)以AP為腰的等腰三角形?
(3)記PQ的中點(diǎn)為G.請(qǐng)你探求點(diǎn)G隨點(diǎn)P,Q運(yùn)動(dòng)所形成的圖形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知△DEF中,DE=17cm,EF=30cm,EF邊上的中線DG=8cm.
求證:△DEF是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在格點(diǎn)中找到一點(diǎn)C,使得△ABC是等腰三角形,且AB為其中的一條腰,這樣的格點(diǎn)共有幾個(gè)?( 。
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案