【題目】已知:如圖,菱形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,且AC=12cm,BD=16cm.點(diǎn)P從點(diǎn)B出發(fā),沿BA方向勻速運(yùn)動(dòng),速度為1cm/s;同時(shí),直線EF從點(diǎn)D出發(fā),沿DB方向勻速運(yùn)動(dòng),速度為1cm/s,EF⊥BD,且與AD,BD,CD分別交于點(diǎn)E,Q,F(xiàn);當(dāng)直線EF停止運(yùn)動(dòng)時(shí),點(diǎn)P也停止運(yùn)動(dòng).連接PF,設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<8).設(shè)四邊形APFE的面積為y(cm2),則下列圖象中,能表示y與t的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

【答案】D
【解析】解:如圖,過(guò)點(diǎn)C作CG⊥AB于點(diǎn)G,
∵S菱形ABCD=ABCG= ACBD,
即10CG= ×12×16,
∴CG=
∴S梯形APFD= (AP+DF)CG
= (10﹣t+ t) = t+48.
∵△DFQ∽△DCO,
= ,
=
∴QF= t.
同理,EQ= t.
∴EF=QF+EQ= t.
∴SEFD= EFQD= × t×t= t2
∴y=( t+48)﹣ t2=﹣ t2+ t+48.
是二次函數(shù),開(kāi)口向下,D答案符合,
故選D.

過(guò)點(diǎn)C作CG⊥AB于點(diǎn)G,由S菱形ABCD=ABCG= ACBD,求出CG.據(jù)S梯形APFD= (AP+DF)CG.SEFD= EFQD.得出y與t之間的函數(shù)關(guān)系式;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過(guò)程中發(fā)現(xiàn),每月銷售量y(萬(wàn)件)與銷售單價(jià)x(元)之間的關(guān)系可以近似地看作一次函數(shù)y=﹣2x+100.(利潤(rùn)=售價(jià)﹣制造成本)
(1)寫(xiě)出每月的利潤(rùn)z(萬(wàn)元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)為多少元時(shí),廠商每月能獲得350萬(wàn)元的利潤(rùn)?當(dāng)銷售單價(jià)為多少元時(shí),廠商每月能獲得最大利潤(rùn)?最大利潤(rùn)是多少?
(3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售單價(jià)不能高于32元,如果廠商要獲得每月不低于350萬(wàn)元的利潤(rùn),那么制造出這種產(chǎn)品每月的最低制造成本需要多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點(diǎn)D,E是BC的中點(diǎn),連接DE、OE.
(1)求證:DE與⊙O相切;
(2)求證:BC2=2CDOE;
(3)若cosC= ,DE=4,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點(diǎn)E,交BC于點(diǎn)D,過(guò)點(diǎn)E做直線l∥BC.

(1)判斷直線l與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若∠ABC的平分線BF交AD于點(diǎn)F,求證:BE=EF;
(3)在(2)的條件下,若DE=4,DF=3,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)圖回答問(wèn)題:
(1)如圖1,
紙片ABCD中,AD=5,SABCD=15,過(guò)點(diǎn)A作AE⊥BC,垂足為E,沿AE剪下△ABE,將它平移至△DCE′的位置,拼成四邊形AEE′D,則四邊形AEE′D的形狀為
A.平行四邊形
B.菱形
C.矩形
D.正方形
(2)如圖2,
在(1)中的四邊形紙片AEE′D中,在EE′上取一點(diǎn)F,使EF=4,剪下△AEF,將它平移至△DE′F′的位置,拼成四邊形AFF′D.
①求證:四邊形AFF′D是菱形.
②求四邊形AFF′D的兩條對(duì)角線的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O是△ABC內(nèi)一點(diǎn),連結(jié)OB、OC,并將AB、OB、OC、AC的中點(diǎn)D、E、F、G依次連結(jié),得到四邊形DEFG.
(1)求證:四邊形DEFG是平行四邊形;
(2)如果∠OBC=45°,∠OCB=30°,OC=4,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是由射線AB,BC,CD,DE,EA組成的平面圖形,若∠1+∠2+∠3+∠4=225°,ED∥AB,則∠1的度數(shù)為(
A.55°
B.45°
C.35°
D.25°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小麗蕩秋千,秋千鏈子的長(zhǎng)OA為2.5米,秋千向兩邊擺動(dòng)的角度相同,擺動(dòng)的水平距離AB為3米,則秋千擺至最高位置時(shí)與最低價(jià)位置時(shí)的高度之差(即CD)為米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,∠A=30°,AB=16.點(diǎn)P是斜邊AB上一點(diǎn).過(guò)點(diǎn)P作PQ⊥AB,垂足為P,交邊AC(或邊CB)于點(diǎn)Q,設(shè)AP=x,△APQ的面積為y,則y與x之間的函數(shù)圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案