如圖,直線AD對應的函數(shù)關系式為y=-x-1,與拋物線交于點A(在x軸上)、點D,拋物線與x軸另一交點為B(3,0),拋物線與y軸交點C(0,-3),
(1)求拋物線的解析式;
(2)P是線段AD上的一個動點,過P點作y軸的平行線交拋物線于E點,求線段PE長度的最大值;
(3)若點F是拋物線的頂點,點G是直線AD與拋物線對稱軸的交點,在線段AD上是否存在一點P,使得四邊形GFEP為平行四邊形;
(4)點H拋物線上的動點,在x軸上是否存在點Q,使A、D、H、Q這四個點為頂點的四邊形是平行四邊形?如果存在,直接寫出所有滿足條件的Q點坐標;如果不存在,請說明理由.

解:(1)令y=0,則-x-1=0,
解得x=-1,
所以,點A的坐標為(-1,0),
設拋物線解析式為y=ax2+bx+c,
∵B(3,0),C(0,-3)在拋物線上,
,
解得,
所以,拋物線解析式為y=x2-2x-3;

(2)∵P是線段AD上的一個動點,過P點作y軸的平行線交拋物線于E點,
∴設點P(x,-x-1),則點E的坐標為(x,x2-2x-3),
PE=(-x-1)-(x2-2x-3),
=-x-1-x2+2x+3,
=-x2+x+2,
=-(x-2+,
聯(lián)立,
解得,
所以,點D的坐標為(2,-3),
∵P是線段AD上的一個動點,
∴-1<x<2,
∴當x=時,PE有最大值,最大值為;

(3)∵y=x2-2x-3=(x-1)2-4,
∴點F的坐標為(1,-4),點G的橫坐標為1,
y=-1-1=-2,
∴點G的坐標為(-1,-2),
∴GF=-2-(-4)=-2+4=2,
∵四邊形GFEP為平行四邊形,
∴PE=GF,
∴-x2+x+2=2,
解得x1=0,x2=1(舍去),
此時,y=-1,
∴點P的坐標為(0,-1),
故,存在點P(0,-1),使得四邊形GFEP為平行四邊形;

(4)存在.理由如下:
①當點H在x軸下方時,∵點Q在x軸上,
∴HD∥AQ,
∴點H的縱坐標與點D相同,是-3,
此時,x2-2x-3=-3,
整理得,x2-2x=0,
解得x1=0,x2=2(舍去),
∴HD=2-0=2,
∵點A的坐標為(-1,0),
-1-2=-3,-1+2=1,
∴點Q的坐標為(-3,0)或(1,0);
②當點H在x軸上方時,根據(jù)平行四邊形的對稱性,點H到AQ的距離等于點D到AQ的距離,
∵點D的縱坐標為-3,
∴點H的縱坐標為3,
∴x2-2x-3=3,
整理得,x2-2x-6=0,
解得x1=1-,x2=1+,
∵點A的橫坐標為-1,點D的橫坐標為2,
2-(-1)=2+1=3,
根據(jù)平行四邊形的性質,1-+3=4-,1++3=4+,
∴點Q的坐標為(4-,0)或(4+,0),
綜上所述,存在點Q(-3,0)或(1,0)或(4-,0)或(4+,0),使A、D、H、Q這四個點為頂點的四邊形是平行四邊形.
分析:(1)先根據(jù)直線解析式求出點A的坐標,再利用待定系數(shù)法求二次函數(shù)解析式計算即可得解;
(2)根據(jù)直線解析式表示出點P的坐標,利用拋物線解析式表示出點E的坐標,再用點P的縱坐標減去點E的縱坐標,整理即可得到PE的表達式,再聯(lián)立直線解析式與拋物線解析式求出點D的坐標,得到點P的橫坐標的取值范圍,然后根據(jù)二次函數(shù)的最值問題解答;
(3)把拋物線的解析式轉化為頂點式,然后求出點F的坐標,并利用對稱軸根據(jù)點P在直線上求出點G的坐標,然后根據(jù)平行四邊形的對邊平行且相等列式解方程即可判斷并求出點P的坐標;
(4)①當點H在x軸下方時,根據(jù)平行四邊形的對邊平行且相等,可得點H的縱坐標與點D的縱坐標相等,然后代入拋物線解析式求出點H的橫坐標,再求出HD的長度,然后分點Q在點A的左邊與右邊兩種情況求出點Q的坐標;
②當點H在x軸上方時,AQ只能是平行四邊形的對角線,根據(jù)點D的坐標得到點H的縱坐標,然后代入拋物線解析式求出點H的橫坐標,然后根據(jù)點H的橫坐標表示的點到點Q的距離等于點D的橫坐標表示的點到點A的距離相等求解即可.
點評:本題綜合考查了二次函數(shù),主要利用了待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的對稱性,二次函數(shù)的最值問題,以及平行四邊形的性質,(4)要注意根據(jù)點H的位置的不同分情況討論.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,直線EF將矩形紙片ABCD分成面積相等的兩部分,E、F分別與BC交于點E,與AD交于點F(E,F(xiàn)不與頂點重合),設AB=a,AD=b,BE=x.精英家教網(wǎng)
(Ⅰ)求證:AF=EC;
(Ⅱ)用剪刀將紙片沿直線EF剪開后,再將紙片ABEF沿AB對稱翻折,然后平移拼接在梯形ECDF的下方,使一底邊重合,直腰落在邊DC的延長線上,拼接后,下方的梯形記作EE′B′C.
(1)求出直線EE′分別經過原矩形的頂點A和頂點D時,所對應的x:b的值;
(2)在直線EE′經過原矩形的一個頂點的情形下,連接BE′,直線BE′與EF是否平行?你若認為平行,請給予證明;你若認為不平行,請你說明當a與b滿足什么關系時,它們垂直?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖a,矩形ABCD的兩條邊在坐標軸上,點D與原點重合,對角線BD所在直線函數(shù)式為y=
34
x
,AD=8,矩形ABCD沿DB方向以每秒一個單位長度運動,同時點P從點A出發(fā)做勻速運動,沿矩形ABCD的邊經B到達終點C,用了14秒.
(1)求矩形ABCD周長;
(2)如圖b,當P到達B時,求點P坐標;
(3)當點P在運動時,過點P作x軸、y軸的垂線,垂足分別為E、F,
①如圖c,當P在BC上運動時,矩形PEOF的邊能否與矩形ABCD的邊對應成比例?若能,求出時間t的值,若不能,說明理由;
②如圖d,當P在AB上運動時,矩形PEOF的面積能否等于256?若能,求出時間t的值,若不能,說明理由;
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,小明將一張直角梯形紙片沿虛線剪開,得到矩形和三角形兩張紙片,測得AB=5,AD=4.在進行如下操作時遇到了下列幾個問題,請你幫助解決.

(1)如圖2,將△EFG的頂點G移到矩形的頂點B處,再將三角形繞點B順時針旋轉使E點落在CD邊上,此時EF恰好經過點A.
①請證明:△ADE∽△FGE;②求出FG的長度;
(2)如圖3,在(1)的條件下,小明先將△EFG的邊EG和矩形的邊AB重合,然后將△EFG沿直線BC向右平移,至F點與B重合時停止.在平移過程中,設G點平移的距離為x,兩紙片重疊部分面積為y,求在平移的整個過程中,y與x的函數(shù)關系式.
(3)請直接寫出,當重疊面積y在什么范圍時,對應的平移距離x有兩個值;當重疊面積y在什么范圍時,相對應的平移距離x只有一個值?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•荊門)如圖1,正方形ABCD的邊長為2,點M是BC的中點,P是線段MC上的一個動點(不與M、C重合),以AB為直徑作⊙O,過點P作⊙O的切線,交AD于點F,切點為E.
(1)求證:OF∥BE;
(2)設BP=x,AF=y,求y關于x的函數(shù)解析式,并寫出自變量x的取值范圍;
(3)延長DC、FP交于點G,連接OE并延長交直線DC與H(圖2),問是否存在點P,使△EFO∽△EHG(E、F、O與E、H、G為對應點)?如果存在,試求(2)中x和y的值;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案