【題目】如圖,已知A、B兩地在數(shù)軸上相距20米,A地在數(shù)軸上表示的點為-8,小烏龜從A地出發(fā)沿數(shù)軸往B地方向前進,第一次前進1米,第二次后退2米,第三次再前進3米,第四次又后退4米,……,按此規(guī)律行進,(數(shù)軸的一個單位長度等于1米)
(1)求B地在數(shù)軸上表示的數(shù);
(2)若B地在原點的左側,經(jīng)過第五次行進后小烏龜?shù)竭_點P,第六次行進后到達點Q,則點P和點Q到點A的距離相等嗎?請說明理由;
(3)若B地在原點的右側,那么經(jīng)過30次行進后,小烏龜?shù)竭_的點與點B之間的距離是多少米?
【答案】(1)12或-28;(2)相等;(3)70米.
【解析】
(1)到A地距離為20的點有兩個,分別位于A點左側、右側.依據(jù)數(shù)軸兩點距離即可求得點B坐標
(2)數(shù)軸上點的移動規(guī)律是“左減右加”.依據(jù)規(guī)律計算分別求出點P、Q相對A點移動的距離即可得到答案
(3)根據(jù)100為偶數(shù)可得在數(shù)軸上表示的數(shù),再根據(jù)兩點間的距離公式即可求解.
解:(1),.
答:地在數(shù)軸上表示的數(shù)是12或.
(2)令小烏龜從A地出發(fā),前進為“+”,后退為“-”,則:
第五次行進后相對A的位置為:,
第六次行進后相對A的位置為:,
因為點、與點的距離都是3米,
所以點、點到地的距離相等;
(3)若地在原點的右側,前進為“+”,后退為“-”,
則當為100時,它在數(shù)軸上表示的數(shù)為:
,
∵B點表示的為12.
∴AB的距離為(米.
答:小烏龜?shù)竭_的點與點之間的距離是70米.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為正方形OABC的邊OA、OC在坐標軸上.在軸上線段(Q在A的右邊),P從A出發(fā),以每秒1個單位的速度向O運動,當點P到達點O時停止運動,運動時間為.連接PB,過P作PB的垂線,過Q作軸的垂線,兩垂線相交于點D.連接BD交軸于點E,連接PD交軸于點F,連接PE.
(1)求∠PBD的度數(shù).
(2)設△POE的周長為,探索與的函數(shù)關系式,并寫出的取值范圍.
(3)令,當△PBE為等腰三角形時,求△EFD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形.
(1)如圖(1),點E在線段AB上,點D在射線CB上,且ED=EC.將△BCE繞點C順時針旋轉60°至△ACF,連接EF.猜想線段AB,DB,AF之間的數(shù)量關系;
(2)點E在線段BA的延長線上,其它條件與(1)中一致,請在圖(2)的基礎上將圖形補充完整,并猜想線段AB,DB,AF之間的數(shù)量關系;
(3)請選擇(1)或(2)中的一個猜想進行證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知數(shù)軸上O、A兩點對應的數(shù)為0、10,Q為數(shù)軸上一點.
(1)Q為OA線段的中點(即點Q到點O和點A的距離相等),點Q對應的數(shù)為 .
(2)數(shù)軸上有點 Q,使 Q到O、A的距離之和為20,點Q對應的數(shù)為 .
(3)若點Q點表示8,點M以每秒鐘5個單位的速度從O點向右運動,點N以每秒鐘1個單位的速度從A點向右運動,t秒后有 QM= QN,求時間t的值t= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx﹣4的圖象經(jīng)過A(﹣1,0)、B(4,0)兩點,于y軸交于點D.
(1)求這個二次函數(shù)的表達式;
(2)已知點C(3,m)在這個二次函數(shù)的圖象上,連接BC,點P為拋物線上一點,且∠CBP=60°.
①求∠OBD的度數(shù);
②求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某專業(yè)戶要出售300只羊,現(xiàn)在市場上羊的價格為每千克11元,為了估計這300只羊能賣多少錢,試問:
(1)對于上述問題你認為適用___________.(填“普查”或“抽樣調查”)
(2)該專業(yè)戶從口隨機抽取了5只羊,稱得它們的質量(單位:千克)如下:26,31,32 ,36,37
①在這個問題中,總體、個體和樣本各是___________,___________,___________.
②通過上述數(shù)據(jù),你能估算出這300只羊能賣多少錢嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AC為對角線,E為AB上一點,過點E作EF∥AD,與AC、DC分別交于點G,F,H為CG的中點,連接DE,EH,DH,FH.下列結論:
①EG=DF;②∠AEH+∠ADH=180 ;③△EHF≌△DHC;④若,則3S△EDH=13S△DHC,其中結論正確的有___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用紙復印文件,在甲復印店不管一次復印多少頁,每頁收費0.1元.在乙復印店復印同樣的文件,一次復印頁數(shù)不超過20時,每頁收費0.12元;一次復印頁數(shù)超過20時,超過部分每頁收費0.09元.
設在同一家復印店一次復印文件的頁數(shù)為(為非負整數(shù)).
(1)根據(jù)題意,填寫下表:
一次復印頁數(shù)(頁) | 5 | 10 | 20 | 30 | … |
甲復印店收費(元) | 2 | … | |||
乙復印店收費(元) | … |
(2)設在甲復印店復印收費元,在乙復印店復印收費元,分別寫出關于的函數(shù)關系式;
(3)當時,顧客在哪家復印店復印花費少?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點P是矩形ABCD邊AB上的任意一點(與點A、B不重合)
(1)如圖①,現(xiàn)將△PBC沿PC翻折得到△PEC;再在AD上取一點F,將△PAF沿PF翻折得到△PGF,并使得射線PE、PG重合,試問FG與CE的位置關系如何,請說明理由;
(2)在(1)中,如圖②,連接FC,取FC的中點H,連接GH、EH,請你探索線段GH和線段EH的大小關系,并說明你的理由;
(3)如圖③,分別在AD、BC上取點F、C’,使得∠APF=∠BPC’,與(1)中的操作相類似,即將△PAF沿PF翻折得到△PFG,并將△沿翻折得到△,連接,取的中點H,連接GH、EH,試問(2)中的結論還成立嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com