【題目】在平面上,Rt△ABC與直徑為CE的半圓O,如圖1擺放,∠B=90°,BC=m,AC=2CE=n,半圓O交BC邊于點(diǎn)D,將半圓O繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn),點(diǎn)D隨半圓O旋轉(zhuǎn),且∠ECD=∠ACB,旋轉(zhuǎn)角記為α(0°≤α≤180°).
(1)①當(dāng)α=0°時(shí),連接DE,則∠CDE=°,CD=;②當(dāng)α=180°時(shí), =
(2)試判斷:旋轉(zhuǎn)過程中 的大小有無變化?請(qǐng)僅就圖2的情形給出證明.
(3)若m=4,n=5,當(dāng)α=∠ACB時(shí),線段BD=
(4)若m=4 ,n=6,當(dāng)半圓O旋轉(zhuǎn)至與△ABC的邊相切時(shí),線段BD=

【答案】
(1)90; m;
(2)如圖3中,

∵∠ACB=∠DCE,

∴∠ACE=∠BCD,

= = ,

∴△ACE∽△BCD,

= = ;


(3)
(4)2
【解析】(1)解:①如圖1中
當(dāng)α=0時(shí),連接DE,則∠CDE=90°,
∵∠CDE=∠B=90°,
∴DE∥AB,
= =
∵BC=m,
∴CD= m,
所以答案是90°, m,
②如圖2中,當(dāng)α=180°時(shí),BD=BC+CD= m,AE=AC+CE= n,
=
所以答案是 ;

⑶如圖4中,當(dāng)α=∠ACB時(shí),

在Rt△ABC中,∵AC=5,BC=4,
∴AB= =3,
在Rt△ABE中.∵AB=3,BE=BC﹣CE=1.5,
∴AE= = = ,
由(2)可知△ACE∽△BCD,
= ,
= ,
∴BD= ,
所以答案是 ;
⑷∵m=4 ,n=6,
∴CE=3,CD=2 ,AB= =2,
①如圖5中,當(dāng)α=90°時(shí),半圓與AC相切,

在Rt△DBC中,BD= =2
②如圖6中,當(dāng)α=90°+∠ACB時(shí),半圓與BC相切,

作EM⊥AB于M,
∵∠M=∠CBM=∠BCE=90°,
∴四邊形BCEM是矩形,
∴BM=CE=3,ME=4 ,
∴AM=5,AE= = ,
由(2)可知 = ,
∴BD=
所以答案是2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了抓住文化藝術(shù)節(jié)的商機(jī),某商店決定購進(jìn)A、B兩種藝術(shù)節(jié)紀(jì)念品.若購進(jìn)A種紀(jì)念品8件,B種紀(jì)念品3件,需要950元;若購進(jìn)A種紀(jì)念品5件,B種紀(jì)念品6件,需要800元.
(1)求購進(jìn)A、B兩種紀(jì)念品每件各需多少元?
(2)若該商店決定購進(jìn)這兩種紀(jì)念品共100件,考慮市場需求和資金周轉(zhuǎn),用于購買這100件紀(jì)念品的資金不超過8 000元,那么該商店至多購進(jìn)A種紀(jì)念品幾件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,將Rt△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后得Rt△FOE,將線段EF繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°后得線段ED,分別以O(shè),E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,點(diǎn)P為BC邊中點(diǎn),直線a繞頂點(diǎn)A旋轉(zhuǎn),若點(diǎn)B,P在直線a的異側(cè),BM⊥直線a于點(diǎn)M.CN⊥直線a于點(diǎn)N,連接PM,PN.
(1)延長MP交CN于點(diǎn)E(如圖2). ①求證:△BPM≌△CPE;
②求證:PM=PN;
(2)若直線a繞點(diǎn)A旋轉(zhuǎn)到圖3的位置時(shí),點(diǎn)B,P在直線a的同側(cè),其它條件不變,此時(shí)PM=PN還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由;
(3)若直線a繞點(diǎn)A旋轉(zhuǎn)到與BC邊平行的位置時(shí),其它條件不變,請(qǐng)直接判斷四邊形MBCN的形狀及此時(shí)PM=PN還成立嗎?不必說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算: +(tan60﹣1)0+| ﹣1|﹣2cos30°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在銀行存入一筆零花錢.已知這種儲(chǔ)蓄的年利率為n%,若設(shè)到期后的本息和(本金+利息)為y(元),存入的時(shí)間為x(年),那么,
(1)下列哪個(gè)圖象更能反映y與x之間的函數(shù)關(guān)系?從圖中你能看出存入的本金是多少元?一年后的本息和是多少元?
(2)根據(jù)(1)的圖象,求出y與x的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍),并求出兩年后的本息和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將半徑為6的⊙O沿AB折疊,弧AB與AB垂直的半徑OC交于點(diǎn)D且CD=2OD,則折痕AB的長為( )

A.  
B.
C.6   
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一圓錐的左視圖,根據(jù)圖中所標(biāo)數(shù)據(jù),圓錐側(cè)面展開圖的扇形圓心角的大小為(  )

A.90°
B.120°
C.135°
D.150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A在雙曲線y= 上,點(diǎn)B在雙曲線y= (k≠0)上,AB∥x軸,分別過點(diǎn)A,B向x軸作垂線,垂足分別為D,C,若矩形ABCD的面積是8,則k的值為(
A.12
B.10
C.8
D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案