【題目】如圖,已知平面直角坐標(biāo)系內(nèi),A(﹣1,0),B(3,0),點(diǎn)D是線段AB上任意一點(diǎn)(點(diǎn)D不與A,B重合),過點(diǎn)D作AB的垂線l.點(diǎn)C是l上一點(diǎn),且∠ACB是銳角,連結(jié)AC,BC,作AE⊥BC于點(diǎn)E,交CD于點(diǎn)H,連結(jié)BH,設(shè)△ABC面積為S1 , △ABH面積為S2 , 則S1S2的最大值是 .
【答案】16
【解析】解:設(shè)AD=x,BD=4﹣x,
∵∠HAD=∠EAB,∠ADH=∠AEB=90°,
∴△ADH∽△AEB,
∴ = ,
∴AEDH=ADEB,
∵∠ABE=∠DBC,∠CDB=∠AEB=90°,
∴△AEB∽△CDB,
∴ = ,
∴EBBC=ABDB,
∵S1S2= AEBC DHAB
=(AEDH)BC
=(ADEB)BC
=AD(EBBC)
=AD(ABBD)
=4x(4﹣x)
=﹣4(x﹣2)2+16,
∵a=﹣4<0,
∴x=2時(shí),S1S2有最大值,最大值為16,
所以答案是16.
【考點(diǎn)精析】通過靈活運(yùn)用相似三角形的判定與性質(zhì),掌握相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),按A→B→C的方向在AB和BC上移動(dòng),記PA=x,點(diǎn)D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一直線與兩坐標(biāo)軸的正半軸分別交于A,B兩點(diǎn),P是線段AB上任意一點(diǎn)(不包括端點(diǎn)),過P分別作兩坐標(biāo)軸的垂線與兩坐標(biāo)軸圍成的矩形的周長為10,則該直線的函數(shù)表達(dá)式是( )
A.y=x+5
B.y=x+10
C.y=﹣x+5
D.y=﹣x+10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+6x交x軸正半軸于點(diǎn)A,頂點(diǎn)為M,對稱軸MB交x軸于點(diǎn)B.過點(diǎn)C(2,0)作射線CD交MB于點(diǎn)D(D在x軸上方),OE∥CD交MB于點(diǎn)E,EF∥x軸交CD于點(diǎn)F,作直線MF.
(1)求點(diǎn)A,M的坐標(biāo).
(2)當(dāng)BD為何值時(shí),點(diǎn)F恰好落在該拋物線上?
(3)當(dāng)BD=1時(shí)
求直線MF的解析式,并判斷點(diǎn)A是否落在該直線上.
(4)②延長OE交FM于點(diǎn)G,取CF中點(diǎn)P,連結(jié)PG,△FPG,四邊形DEGP,四邊形OCDE的面積分別記為S1 , S2 , S3 , 則S1:S2:S3= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工藝品廠設(shè)計(jì)了一款成本為10元/件的小工藝品投放市場進(jìn)行試銷,經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價(jià)x(元/件) | … | 20 | 30 | 40 | 50 | 60 | … |
每天銷售量y(件) | … | 500 | 400 | 300 | 200 | 100 | … |
(1)把上表中x,y的各組對應(yīng)值作為點(diǎn)的坐標(biāo),在下面的平面直角坐標(biāo)系中描出相應(yīng)的點(diǎn),猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式.
(2)當(dāng)銷售單價(jià)為多少元時(shí),工藝品廠試銷該小工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售額﹣成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線AC,BD并于點(diǎn)O,經(jīng)過點(diǎn)O的直線交AB于E,交CD于F.
(1)求證:OE=OF.
(2)連接DE,BF,則EF與BD滿足什么條件時(shí),四邊形DEBF是矩形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A在雙曲線y= 的第一象限的那一支上,AB垂直于y軸于點(diǎn)B,點(diǎn)C在x軸正半軸上,且OC=2AB,點(diǎn)E在線段AC上,且AE=3EC,點(diǎn)D為OB的中點(diǎn),若△ADE的面積為3,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形ABCD中,對角線AC、BD交于點(diǎn)O,且AC=2BD,以AD為斜邊在菱形ABCD同側(cè)作Rt△ADE.
(1)如圖1,當(dāng)點(diǎn)E落在邊AB上時(shí).
①求證:∠BDE=∠BAO;
②求 的值;
③當(dāng)AF=6時(shí),求DF的長.
(2)如圖2,當(dāng)點(diǎn)E落在菱形ABCD內(nèi)部,且AE=DE時(shí),猜想OE與OB的數(shù)量關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數(shù)y= 在第一象限的圖象經(jīng)過點(diǎn)B.若OA2﹣AB2=12,則k的值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com