【題目】如圖,在矩形ABCD中,AB=5,BC=3,將矩形ABCD繞點B按順時針方向旋轉得到矩形GBEF,點A落在矩形ABCD的邊CD上,連接CE,則CE的長是 .
科目:初中數學 來源: 題型:
【題目】某開發(fā)區(qū)在一項工程招標時,接到甲、乙兩個工程隊的投標書,工程領導小組根據甲、乙兩隊的投標書測算,可有三種施工方案:①甲隊單獨完成這項工程,剛好如 期完成;②乙隊單獨完成此項工程要比規(guī)定工期多用5天;③ ,剩下的工程由乙隊單獨做,也正好如期完工.小亮設規(guī)定的工期為x天,根據題意列出了方 程: ,則方案③中被墨水污染的部分應該是( )
A.甲先做了4天
B.甲乙合作了4天
C.甲先做了工程的
D.甲乙合作了工程的
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:直線AB∥CD,點M,N分別在直線AB,CD上,點E為平面內一點.
(1)如圖1,∠BME,∠E,∠END的數量關系為 (直接寫出答案);
(2)如圖2,∠BME=m°,EF平分∠MEN,NP平分∠END,EQ∥NP,求∠FEQ的度數(用用含m的式子表示)
(3)如圖3,點G為CD上一點,∠BMN=n·∠EMN,∠GEK=n·∠GEM,EH∥MN交AB于點H,探究∠GEK,∠BMN,∠GEH之間的數量關系(用含n的式子表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】修建某一建筑時,若請甲、乙兩個工程隊同時施工,5天可以完成,需付兩隊費用共3 500元;若先請甲隊單獨做3天,再請乙隊單獨做6天可以完成,需付兩隊費用共3 300元.問:
(1)甲、乙兩隊每天的費用各為多少?
(2)若單獨請某隊完成工程,則單獨請哪隊施工費用較少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面材料:
小明遇到這樣一個問題: 如圖1,在矩形中,對角線、相交于點,且,點、、分別是、、的中點,連接所、、.
求證:是等邊三角形.
小明經探究發(fā)現,連接、(如圖2),從而可證, ,使問題得到解決.
(1)請你按照小明的探究思路,完成他的證明過程;
參考小明思考問題的方法或用其他的方法,解決下面的問題:
(2)如圖3,在四邊形中, , , 對角線、相交于點,且(),點、、分別是、、的中點,連接、、.
①否存在與相等的線段?若存在,請找出并證明;若不存在,說明理由.
②求的度數.(用含的式子表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀理解:
若一個整數能表示成a2+b2(a、b是整數)的形式,則稱這個數為“平和數”,例如5是“平和數”,因為5=22+1,再如,M=x2+2xy+2y2=(x+y)2+y2(x,y是整數),我們稱M也是“平和數”.
(1)請你寫一個小于5的“平和數”,并判斷34是否為“平和數”.
(2)已知S=x2+9y2+6x﹣6y+k(x,y是整數,k是常數,要使S為“平和數”,試求出符合條件的一個k值,并說明理由.
(3)如果數m,n都是“平和數”,試說明也是“平和數”.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠AOB=90°,OA=90cm,OB=30cm,一機器人在點B處看見一個小球從點A出發(fā)沿著AO方向勻速滾向點O,機器人立即從點B出發(fā),沿直線勻速前進攔截小球,恰好在點C處截住了小球.如果小球滾動的速度與機器人行走的速度相等,那么機器人行走的路程BC是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,要在平行四邊形內作一個菱形.甲,乙兩位同學的作法分別如下:
對于甲乙兩人的作法,可判斷( )
A.甲正確,乙錯誤B.甲錯誤,乙正確C.甲,乙均正確D.甲、乙均錯誤
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com