【題目】如圖,△ABC中,以BC為直徑的⊙OAB于點D,AE平分∠BACBC于點E,交CD于點F.且CE=CF

1)求證:直線CA是⊙O的切線;

2)若BD=DC,求的值.

【答案】1)證明見解析;(2

【解析】試題分析:(1)若要證明直線CAO的切線,則只要證明ACB=90°即可;

2易證ADF∽△ACE,由相似三角形的性質(zhì)以及結(jié)合已知條件即可求出的值.

試題解析:解:(1)證明:BC為直徑,∴∠BDC=∠ADC=90°,∴∠1+∠3=90°

AE平分BACCE=CF,∴∠1=∠2,∠4=∠5,∴∠2+∠3=90°∵∠3=∠4,∴∠2+∠5=90°∴∠ACB=90°,即ACBC,直線CAO的切線;

2)由(1)可知,1=23=5,∴△ADF∽△ACE, ,BD=DC,tanABC= =∵∠ABC+BAC=90°,ACD+BAC=90°,∴∠ABC=ACD,tanACD=,sinACD=,=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解:a2a4+4a)=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊿ABC中,∠A=40°,ACB=104°BDAC邊上的高,BE是⊿ABC的角平分線,求∠EBD的度數(shù).

【答案】32°

【解析】試題分析:根據(jù)三角形的內(nèi)角和定理求出∠ABC,再根據(jù)角平分線的定義求出∠ABE,然后利用三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和列式求出∠BED,再根據(jù)直角三角形兩銳角互余列式進行計算即可得解.

試題解析由三角形內(nèi)角和定理,得∠B+∠ACB+∠BAC=180°,

∠A=40°,∠ACB=104°,

∴∠ABC=180°-40°-104°=36°,

又∵BE平分∠ABC,

∴∠ABE=ABC=18°

∴∠BED=∠A+∠ABE=40°+18°=58°,

又∵∠BED+∠DBE=90°,

∴∠DBE=90°-∠BED=90°-58°=32°.

型】解答
結(jié)束】
25

【題目】已知,如圖, ABCD,1=2,那么∠E和∠F相等嗎? 為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明騎單車上學(xué),當(dāng)他騎了一段路時想起要買某本書,于是又折回到剛經(jīng)過的某書店,買到書后繼續(xù)去學(xué)校以下是他本次上學(xué)所用的時間與路程的關(guān)系示意圖

根據(jù)圖中提供的信息回答下列問題

1小明家到學(xué)校的路程是________

2)小明在書店停留了___________分鐘

3)本次上學(xué)途中,小明一共行駛了________ ,一共用了______ 分鐘

4)在整個上學(xué)的途中_________(哪個時間段)小明騎車速度最快,最快的速度是___________/

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AEBC,CFAD,垂足分別為E,F,AE,CF分別與BD交于點GH,且AB=

1)若tan∠ABE =2,求CF的長;

2)求證:BG=DH

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值.

2a2+3a)﹣35+2a3a2),其中a=﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,,直線MN分別與x軸、y軸交于點M6,0),N0 ),等邊△ABC的頂點B與原點O重合,BC邊落在x軸正半軸上,點A恰好落在線段MN上,將等邊△ABC從圖l的位置沿x軸正方向以每秒l個單位長度的速度平移,邊ABAC分別與線段MN交于點EF(如圖2所示),設(shè)△ABC平移的時間為ts).

1)等邊△ABC的邊長為_______

2)在運動過程中,當(dāng)t=_______時,MN垂直平分AB;

3)若在△ABC開始平移的同時.點P從△ABC的頂點B出發(fā).以每秒2個單位長度的速度沿折線BAAC運動.當(dāng)點P運動到C時即停止運動.△ABC也隨之停止平移.

①當(dāng)點P在線段BA上運動時,若△PEF與△MNO相似.求t的值;

②當(dāng)點P在線段AC上運動時,設(shè),求St的函數(shù)關(guān)系式,并求出S的最大值及此時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果 (a 1) x a 1 的解集是 x 1 ,那么 a 的取值范圍是(

A.a 0B.a 1C.a 1D.a 是任意有理數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程mx-3x+m-4=0(m為常數(shù)).

(1)求證:方程有兩個不相等的實數(shù)根;

(2)設(shè),是方程的兩個實數(shù)根,且+=6.請求出方程的這兩個實數(shù)根.

查看答案和解析>>

同步練習(xí)冊答案