(2013年四川南充8分)某商場購進一種每件價格為100元的新商品,在商場試銷發(fā)現(xiàn):銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關系:
(1)求出y與x之間的函數關系式;
(2)寫出每天的利潤W與銷售單價x之間的函數關系式;若你是商場負責人,會將售價定為多少,來保證每天獲得的利潤最大,最大利潤是多少?
科目:初中數學 來源: 題型:解答題
某工廠現(xiàn)有甲種原料360kg,乙種原料290kg,計劃用它們生產A、B兩種產品共50件,已知每生產一件A種產品,需要甲種原料9kg、乙種原料3kg,獲利700元,生產一件B種產品,需要甲種原料4kg、乙種原料10kg,可獲利1200元.
(1)利用這些原料,生產A、B兩種產品,有哪幾種不同的方案?
(2)設生產兩種產品總利潤為y(元),其中生產A中產品x(件),試寫出y與x之間的函數解析式.
(3)利用函數性質說明,采用(1)中哪種生產方案所獲總利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,一次函數與反比例函數的圖象相交于點A,且點A的縱坐標為1.
(1)求反比例函數的解析式;
(2)根據圖象寫出當x>0時,一次函數的值大于反比例函數的值的x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
閱讀材料:若a,b都是非負實數,則.當且僅當a=b時,“=”成立.
證明:∵,∴.
∴.當且僅當a=b時,“=”成立.
舉例應用:已知x>0,求函數的最小值.
解:.當且僅當,即x=1時,“=”成立.
當x=1時,函數取得最小值,y最小=4.
問題解決:汽車的經濟時速是指汽車最省油的行駛速度.某種汽車在每小時70~110公里之間行駛時(含70公里和110公里),每公里耗油升.若該汽車以每小時x公里的速度勻速行駛,1小時的耗油量為y升.
(1)求y關于x的函數關系式(寫出自變量x的取值范圍);
(2)求該汽車的經濟時速及經濟時速的百公里耗油量(結果保留小數點后一位).
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
某社區(qū)活動中心為鼓勵居民加強體育鍛煉,準備購買10副某種品牌的羽毛球拍,每副球拍配x(x≥2)個羽毛球,供社區(qū)居民免費借用.該社區(qū)附近A、B兩家超市都有這種品牌的羽毛球拍和羽毛球出售,且每副球拍的標價均為30元,每個羽毛球的標價為3元,目前兩家超市同時在做促銷活動:
A超市:所有商品均打九折(按標價的90%)銷售;
B超市:買一副羽毛球拍送2個羽毛球.
設在A超市購買羽毛球拍和羽毛球的費用為yA(元),在B超市購買羽毛球拍和羽毛球的費用為yB(元).請解答下列問題:
(1)分別寫出yA、yB與x之間的關系式;
(2)若該活動中心只在一家超市購買,你認為在哪家超市購買更劃算?
(3)若每副球拍配15個羽毛球,請你幫助該活動中心設計出最省錢的購買方案.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
義潔中學計劃從榮威公司購買A、B兩種型號的小黑板,經洽談,購買一塊A型小黑板比買一塊B型小黑板多用20元.且購買5塊A型小黑板和4塊B型小黑板共需820元.
(1)求購買一塊A型小黑板、一塊B型小黑板各需要多少元?
(2)根據義潔中學實際情況,需從榮威公司購買A、B兩種型號的小黑板共60塊,要求購買A、B兩種型號小黑板的總費用不超過5240元.并且購買A型小黑板的數量應大于購買A、B種型號小黑板總數量的.請你通過計算,求出義潔中學從榮威公司購買A、B兩種型號的小黑板有哪幾種方案?
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
如圖,已知一次函數y=k1x+b(k1≠0)的圖象分別與x軸,y軸交于A,B兩點,且與反比例函數(k2≠0)的圖象在第一象限的交點為C,過點C作x軸的垂線,垂足為D,若OA=OB=OD=2.
(1)求一次函數的解析式;
(2)求反比例函數的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
為了落實黨中央提出的“惠民政策”,我市今年計劃開發(fā)建設A、B兩種戶型的“廉租房”共40套.投入資金不超過200萬元,又不低于198萬元.開發(fā)建設辦公室預算:一套A型“廉租房”的造價為5.2萬元,一套B型“廉租房”的造價為4.8萬元.
(1)請問有幾種開發(fā)建設方案?
(2)哪種建設方案投入資金最少?最少資金是多少萬元?
(3)在(2)的方案下,為了讓更多的人享受到“惠民”政策,開發(fā)建設辦公室決定通過縮小“廉租房”的面積來降低造價、節(jié)省資金.每套A戶型“廉租房”的造價降低0.7萬元,每套B戶型“廉租房”的造價降低0.3萬元,將節(jié)省下來的資金全部用于再次開發(fā)建設縮小面積后的“廉租房”,如果同時建設A、B兩種戶型,請你直接寫出再次開發(fā)建設的方案.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com