【題目】如圖,點(diǎn)C在以AB為直徑的⊙O上,AD與過(guò)點(diǎn)C的切線垂直,垂足為點(diǎn)D,AD交⊙O于點(diǎn)E.

(1)求證:AC平分∠DAB;
(2)連接BE交AC于點(diǎn)F,若cos∠CAD= ,求 的值.

【答案】
(1)證明:連接OC,

∵CD是⊙O的切線,

∴CD⊥OC,

又∵CD⊥AD,

∴AD∥OC,

∴∠CAD=∠ACO,

∵OA=OC,

∴∠CAO=∠ACO,

∴∠CAD=∠CAO,

即AC平分∠DAB


(2)解:連接BE、BC、OC,BE交AC于F交OC于H.

∵AB是直徑,

∴∠AEB=∠DEH=∠D=∠DCH=90°,

∴四邊形DEHC是矩形,

∴∠EHC=90°即OC⊥EB,

∴DC=EH=HB,DE=HC,

∵cos∠CAD= = ,設(shè)AD=4a,AC=5a,則DC=EH=HB=3a,

∵cos∠CAB= =

∴AB= a,BC= a,

在RT△CHB中,CH= = a,

∴DE=CH= a,AE= = a,

∵EF∥CD,

= =


【解析】本題考查了切線的性質(zhì),平行線的性質(zhì)和判定,勾股定理,圓周角定理,圓心角、弧、弦之間的關(guān)系的應(yīng)用,能靈活運(yùn)用知識(shí)點(diǎn)進(jìn)行推理是解此題的關(guān)鍵.(1)連
接OC,根據(jù)切線的性質(zhì)和已知求出OC∥AD,求出∠OCA=∠CAO=∠DAC,即可得出答案;(2)連接BE、BC、OC,BE交AC于F交OC于H,根據(jù)cos∠CAD= = ,設(shè)AD=4a,AC=5a,則DC=EH=HB=3a,根據(jù)cos∠CAB= = ,求出AB、BC,再根據(jù)勾股定理求出CH,由此即可解決問(wèn)題;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知矩形ABCD中,AB=10cm,AD=4cm,作如下折疊操作.如圖1和圖2所示.在邊AB上取點(diǎn)M,在邊AD或DC上取點(diǎn)P,連接MP,將△AMP或四邊形AMPD沿著直線MP折疊到△A′MP或四邊形A′MPD′,點(diǎn)A落點(diǎn)為點(diǎn)A′,點(diǎn)D落點(diǎn)為點(diǎn)D′.
探究:

(1)如圖1,若AM=8cm,點(diǎn)P在AD上,點(diǎn)A′落在DC上,則∠MA′C的度數(shù)為
(2)如圖2,若AM=5cm,點(diǎn)P在DC上,點(diǎn)A′落在DC上.
①求證:△MA′P是等腰三角形;
②請(qǐng)直接寫(xiě)出線段DP的長(zhǎng)是
(3)若點(diǎn)M固定為AB的中點(diǎn),點(diǎn)P由A開(kāi)始,沿A﹣D﹣C方向,在AD、DC邊上運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)速度為1cm/s,運(yùn)動(dòng)時(shí)間為t s,按操作要求折疊:
①求:當(dāng)MA′與線段DC有交點(diǎn)時(shí),t的取值范圍;
②直接寫(xiě)出當(dāng)點(diǎn)A′到邊AB 的距離最大時(shí),t的值是
發(fā)現(xiàn):若點(diǎn)M在線段AB上移動(dòng),點(diǎn)P仍為線段AD或DC上的任意點(diǎn),隨著點(diǎn)M的位置不同,按操作要求折疊后,點(diǎn)A的落點(diǎn)A′的位置會(huì)出現(xiàn)以下三種不同的情況:不會(huì)落在線段DC上,只有一次落在線段DC上,會(huì)有兩次落在線段DC上.請(qǐng)直接寫(xiě)出點(diǎn)A′有兩次落在線段DC上時(shí),AM的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一書(shū)架有上下兩層,其中上層有2本語(yǔ)文1本數(shù)學(xué),下層有2本語(yǔ)文2本數(shù)學(xué),現(xiàn)從上下層隨機(jī)各取1本,則抽到的2本都是數(shù)學(xué)書(shū)的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,反比例函數(shù)y= 的圖象與一次函數(shù)y=k(x﹣2)的圖象交點(diǎn)為A(3,2),B(x,y).

(1)求反比例函數(shù)與一次函數(shù)的解析式及B點(diǎn)坐標(biāo);
(2)若C是y軸上的點(diǎn),且滿足△ABC的面積為10,求C點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5 ,則BD的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為8,B是數(shù)軸上一點(diǎn),且AB=14動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒5個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為tt>0)秒

(1)寫(xiě)出數(shù)軸上點(diǎn)B表示的數(shù) ,點(diǎn)P表示的數(shù)用含t的代數(shù)式表示);

(2)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)PQ同時(shí)出發(fā),問(wèn)點(diǎn)P運(yùn)動(dòng)多少秒時(shí)追上點(diǎn)Q?

(3)若MAP的中點(diǎn),N為PB的中點(diǎn)點(diǎn)P在運(yùn)動(dòng)的過(guò)程中,線段MN的長(zhǎng)度是否發(fā)生變化?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)你畫(huà)出圖形,并求出線段MN的長(zhǎng);

(4)若點(diǎn)D是數(shù)軸上一點(diǎn),點(diǎn)D表示的數(shù)是x,請(qǐng)你探索式子是否有最小值?如果有,直接寫(xiě)出最小值;如果沒(méi)有,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】黔東南州某校吳老師組織九(1)班同學(xué)開(kāi)展數(shù)學(xué)活動(dòng),帶領(lǐng)同學(xué)們測(cè)量學(xué)校附近一電線桿的高.已知電線桿直立于地面上,某天在太陽(yáng)光的照射下,電線桿的影子(折線BCD)恰好落在水平地面和斜坡上,在D處測(cè)得電線桿頂端A的仰角為30°,在C處測(cè)得電線桿頂端A得仰角為45°,斜坡與地面成60°角,CD=4m,請(qǐng)你根據(jù)這些數(shù)據(jù)求電線桿的高(AB).
(結(jié)果精確到1m,參考數(shù)據(jù): ≈1.4, ≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了經(jīng)濟(jì)發(fā)展的需要,某市2014年投入科研經(jīng)費(fèi)500萬(wàn)元,2016年投入科研經(jīng)費(fèi)720萬(wàn)元.
(1)求2014至2016年該市投入科研經(jīng)費(fèi)的年平均增長(zhǎng)率;
(2)根據(jù)目前經(jīng)濟(jì)發(fā)展的實(shí)際情況,該市計(jì)劃2017年投入的科研經(jīng)費(fèi)比2016年有所增加,但年增長(zhǎng)率不超過(guò)15%,假定該市計(jì)劃2017年投入的科研經(jīng)費(fèi)為a萬(wàn)元,請(qǐng)求出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)購(gòu)進(jìn)一種單價(jià)為40元的書(shū)包,如果以單價(jià)50元出售,那么每月可售出30個(gè),根據(jù)銷(xiāo)售經(jīng)驗(yàn),售價(jià)每提高5元,銷(xiāo)售量相應(yīng)減少1個(gè).
(1)請(qǐng)寫(xiě)出銷(xiāo)售單價(jià)提高x元與總的銷(xiāo)售利潤(rùn)y元之間的函數(shù)關(guān)系式;
(2)如果你是經(jīng)理,為使每月的銷(xiāo)售利潤(rùn)最大,那么你確定這種書(shū)包的單價(jià)為多少元?此時(shí),最大利潤(rùn)是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案