【題目】為了了解某小區(qū)青年對“高鐵”、“掃碼支付”、“網(wǎng)購”和“共享單車”新四大發(fā)明的喜愛程度,隨機調(diào)查該小區(qū)一部分青年(每名青年只能選一個),并將調(diào)查結(jié)果制成如圖所示統(tǒng)計表與條形統(tǒng)計圖.
青年最喜愛的新四大發(fā)明人數(shù)統(tǒng)計表
節(jié)目 | 人數(shù)(名) | 百分比 |
共享單車 | 5 | |
掃碼支付 | 15 | |
網(wǎng)購 | ||
高鐵 | 10 |
青年最喜愛的新四大發(fā)明人數(shù)條形統(tǒng)計圖
(1)計算的值 ;
(2)請補全條形統(tǒng)計圖;
(3)在被調(diào)查喜愛“共享單車”青年中,小明一周內(nèi)使用共享單車的次數(shù)分別為:1,3,5,12,,若整數(shù)是這組數(shù)據(jù)的中位數(shù),直接寫出該組數(shù)據(jù)的平均數(shù).
【答案】(1)50;(2)補全條形統(tǒng)計圖見解析;(3)當時,這組數(shù)據(jù)的平均數(shù)為4.8,當時,這組數(shù)據(jù)的平均數(shù)為5,當時,這組數(shù)據(jù)的平均數(shù)為5.2.
【解析】
(1)根據(jù)學生數(shù)和相應的百分比,即可得到的值,根據(jù)“掃碼支付”的人數(shù)與總?cè)藬?shù)之比求得“掃碼支付”的百分比,可得到的值,即可求得答案;
(2)根據(jù)的值,即可將條形統(tǒng)計圖補充完整;
(3)根據(jù)中位數(shù)的定義確定整數(shù)a的值,由平均數(shù)的定義即可得出答案.
(1)由題可得,,
∴
∴
(2)青年最喜愛的新四大發(fā)明人數(shù)條形統(tǒng)計圖
(3)數(shù)據(jù)1,3,5,12,的中位數(shù)是整數(shù),
或或,
當時,這組數(shù)據(jù)的平均數(shù)為,
當時,這組數(shù)據(jù)的平均數(shù)為,
當時,這組數(shù)據(jù)的平均數(shù)為
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣(x﹣k)2+經(jīng)過點D(﹣1,0),與x軸正半軸交于點E,與y軸交于點C,過點C作CB∥x軸交拋物線于點B.連接BD交y軸于點F.
(1)求點E的坐標.
(2)求△CFB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,CD與⊙O相切于C,BE∥CO.
(1)求證:BC是∠ABE的平分線;
(2)若DC=8,⊙O的半徑OA=6,求CE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形網(wǎng)格中,每個小正方形的邊長都是1個單位長度,在Rt△OAB中,∠OAB=90°,且點B的坐標為(4,2).
(1)畫出△OAB向下平移3個單位長度后的△O1A1B1;
(2)畫出△OAB繞點O逆時針旋轉(zhuǎn)90°后的△OA2B2;
(3)在(2)的條件下,求點B旋轉(zhuǎn)到點B2所經(jīng)過的路徑長(結(jié)果保留根號和π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AD⊥BC,垂足為D.給出下列四個結(jié)論:①sinα=sinB;②sinα=cosβ;③;④.其中正確的結(jié)論有____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)(為常數(shù),且)的圖像與反比例函數(shù)的圖像交于,兩點.
(1)求一次函數(shù)的表達式;
(2)若將直線向下平移個單位長度后與反比例函數(shù)的圖像有且只有一個公共點,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義: 在平面直角坐標系中,如果點和都在某函數(shù)的圖象上,則稱點是圖象的一對“相關(guān)點”.例如,點和點是直線的一對相關(guān)點.
請寫出反比例函數(shù)的圖象上的一對相關(guān)點的坐標;
如圖,拋物線的對稱軸為直線,與軸交于點.
求拋物線的解析式:
若點是拋物線上的一對相關(guān)點,直線與軸交于點,點為拋物線上之間的一點,求面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“滑塊鉸鏈”是一種用于連接窗扇和窗框,使窗戶能夠開啟和關(guān)閉的連桿式活動鏈接裝置(如圖1).圖2是“滑塊鉸鏈”的平面示意圖,滑軌MN安裝在窗框上,懸臂DE安裝在窗扇上,支點B、C、D始終在一條直線上,已知托臂AC=20厘米,托臂BD=40厘米,支點C,D之間的距離是10厘米,張角∠CAB=60°.
(1)求支點D到滑軌MN的距離(精確到1厘米);
(2)將滑塊A向左側(cè)移動到A′,(在移動過程中,托臂長度不變,即AC=A′C′,BC=BC′)當張角∠C′A'B=45°時,求滑塊A向左側(cè)移動的距離(精確到1厘米).(備用數(shù)據(jù):≈1.41,≈1.73,≈2.45,≈2.65)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑.PC是⊙O的切線,C為切點,PD⊥AB于點D,交AC于點E.
(1)求證:∠PCE=∠PEC;
(2)若AB=10,ED=,sinA=,求PC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com