【題目】如圖,利用一面墻(墻的長度不超過45米),用80米長的籬笆圍一個矩形場地.

1)設(shè)所圍矩形ABCD的邊ABx米,則邊BC=   米;

2)怎樣圍才能使矩形場地的面積為7502

【答案】(1)40;(2)矩形ABCD的邊AB30米,BC25米.

【解析】

1BC=(籬笆長﹣AB÷2,把相關(guān)數(shù)值代入即可求解;

2)等量關(guān)系為:AB×BC750,把相關(guān)數(shù)值代入即可求解.

解:(1)由題意知,BC的長度為:(80x÷240

故答案是:40;

2)設(shè)ABx,則x40)=750

解得x150,x230

x≤45,

x50(不合題意,應(yīng)舍去),

x30,

ABx30(米),

AD4025(米).

答:矩形ABCD的邊AB30米,BC25米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】文化是一個國家、一個民族的靈魂,近年來,央視推出《中國詩詞大會》、《中國成語大會》、《朗讀者》、《經(jīng)曲詠流傳》等一系列文化欄目.為了解學(xué)生對這些欄目的喜愛情況,某學(xué)校組織學(xué)生會成員隨機抽取了部分學(xué)生進(jìn)行調(diào)查,被調(diào)查的學(xué)生必須從《經(jīng)曲詠流傳》(記為A)、《中國詩詞大會》(記為B)、《中國成語大會》(記為C)、《朗讀者》(記為D)中選擇自己最喜愛的一個欄目,也可以寫出一個自己喜愛的其他文化欄目(記為E).根據(jù)調(diào)查結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計圖.

請根據(jù)圖中信息解答下列問題:

(1)在這項調(diào)查中,共調(diào)查了多少名學(xué)生?

(2)將條形統(tǒng)計圖補充完整,并求出扇形統(tǒng)計圖中“B”所在扇形圓心角的度數(shù);

(3)若選擇“E”的學(xué)生中有2名女生,其余為男生,現(xiàn)從選擇“E”的學(xué)生中隨機選出兩名學(xué)生參加座談,請用列表法或畫樹狀圖的方法求出剛好選到同性別學(xué)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰直角,點是斜邊上一點(不與重合),的外接圓的直徑.

1)求證:是等腰直角三角形;

2)若的直徑為2,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,E為正方形ABCDAB上一動點(不與A重合),AB=4,將DAE繞著點A逆時針旋轉(zhuǎn)90°得到BAF,再將DAE沿直線DE折疊得到DME.下列結(jié)論:①連結(jié)AM,則AMFB;②連結(jié)FE,當(dāng)FE、M共線時,AE=4-4;③連結(jié)EF、EC、FC,若FEC是等腰三角形,則AE=4-4;④連結(jié)EF,設(shè)FC、ED交于點O,若FE平分∠BFC,則OFC的中點,且AE=2-2,其中正確的個數(shù)有( 。﹤.

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個等腰三角形的三邊長均滿足方程x2-6x+8=0,則此三角形的周長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)的圖象分別與x軸、y軸交于點AC,與反比列函數(shù)的圖象在第一象限內(nèi)交于點P,過點P軸,垂足為B,且的面積為9

A的坐標(biāo)為______,點C的坐標(biāo)為______,點P的坐標(biāo)為______;

已知點Q在反比例函數(shù)的圖象上,其橫坐標(biāo)為6,在x軸上確定一點M,使得的周長最小,求出點M的坐標(biāo);

設(shè)點E是反比例函數(shù)在第一象限內(nèi)圖象上的一動點,且點E在直線PB的右側(cè),過點E軸,垂足為F,當(dāng)相似時,求動點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,AB是⊙O的直徑,點E為線段OB上一點(不與O、B重合),作ECOB,交⊙O于點C,作直徑CD,過點C的切線交DB的延長線于點P,作AFPC于點F,連接CB

1)求證:AC平分∠FAB;

2)求證:BC2=CECP

3)若,⊙O的面積為12π,求PF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,∠1與∠3互余,∠2與∠3的余角互補,∠4=115°,NM平分∠ANE,求∠MNF的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+2x+m﹣2=0有兩個實數(shù)根,m為正整數(shù),且該方程的根都是整數(shù),則符合條件的所有正整數(shù)m的和為( 。

A. 6 B. 5 C. 4 D. 3

查看答案和解析>>

同步練習(xí)冊答案