【題目】如圖,矩形ABCD中,AB=6,BC=3.點E在線段BA上從B點以每秒1個單位的速度出發(fā)向A點運動,F(xiàn)是射線CD上一動點,在點E、F運動的過程中始終保持EF=5,且CF>BE,點P是EF的中點,連接AP.設點E運動時間為ts.
(1)在點E、F運動的過程中,AP的長度存在一個最小值,當AP的長度取得最小值時,點P的位置應該在 .
(2)當AP⊥EF時,求出此時t的值
(3)以P為圓心作⊙P,當⊙P與矩形ABCD三邊所在直線都相切時,求出此時t的值,并指出此時⊙P的半徑長.
【答案】(1)AD的中點;(2)t=(s);(3),;,
【解析】
(1)在點E、F運動的過程中始終保持EF=5,且CF>BE,故EF在運動過程中始終保持平行移動,因為點P是EF的中點,則點P始終在過EF的中點且平行于AB的直線上運動,運動軌跡為一條線段,在運動過程中,根據(jù)垂線段最短可得P為AD的中點時,AP的長度最。
(2)首先過點E作EG⊥CD于點G,易證得△APE∽△EGF,然后由相似三角形的對應邊成比例,求得AE的長,繼而求得答案;
(3)分兩種情況考慮:當⊙P在矩形ABCD內(nèi)分別與AB、AD、CD相切于點Q、R、N時,連接PQ,PR,PN,如圖3所示,可得出四邊形AQPR和四邊形RPND為兩個全等的正方形,其邊長為大正方形邊長的一半,在直角三角形PQE中,由PE與PQ的長,利用勾股定理求出EQ的長,進而由BA+AQ-EQ求出BE的長,即為t的值,并求出此時⊙P的半徑;當⊙P在矩形ABCD外分別與射線BA、AD、射線CD相切于點Q、R、N時,如圖4所示,同理求出BE的長,即為t的值,并求出此時⊙P的半徑.
(1)在點E、F運動的過程中始終保持EF=5,且CF>BE,故EF在運動過程中始終保持平行移動,因為點P是EF的中點,則點P始終在過EF的中點且平行于AB的直線上運動,運動軌跡為一條線段,如圖所示:根據(jù)垂線段最短可得P為AD的中點時,AP的長度最。
故答案為:AD的中點;
(2)過點E作EG⊥CD于點G,如圖2
則四邊形BCGE是矩形,
∴EG=BC=3,AB∥CD,
∴FG=,∠AEP=∠EFG
∵AP⊥EF,
∴∠APE=∠EGF=90°,
∴△APE∽△EGF,
∴
∴
∴AE=
∴BE=6-
∴t=(s)
(3)如圖3,當⊙P在矩形ABCD內(nèi)分別與AB、AD、CD相切于點Q、R、N時,
連接PQ、PR、PN,則PQ⊥AB、PR⊥AD、PN⊥CD,
則四邊形AQPR與四邊形RPND為兩個全等的正方形,
∴PQ=AQ=AR=DR=AD=,
在Rt△PQE中,EP=,由勾股定理可得:EQ=2,
∴BE=BA-EQ-AQ=6-2-=,
∴t=,此時⊙P的半徑為;
如圖4,當⊙P在矩形ABCD外分別與射線BA、AD、射線CD相切于點Q、R、N時,
類比圖3可得,EQ=2,AQ=,
∴BE=BA+AQ-EQ=6+-2=,
∴t=,此時⊙P的半徑為.
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=﹣x2+bx+c經(jīng)過點A(4,3),頂點為B,對稱軸是直線x=2.
(1)求拋物線的函數(shù)表達式和頂點B的坐標;
(2)如圖1,拋物線與y軸交于點C,連接AC,過A作AD⊥x軸于點D,E是線段AC上的動點(點E不與A,C兩點重合);
(i)若直線BE將四邊形ACOD分成面積比為1:3的兩部分,求點E的坐標;
(ii)如圖2,連接DE,作矩形DEFG,在點E的運動過程中,是否存在點G落在y軸上的同時點F恰好落在拋物線上?若存在,求出此時AE的長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ACB中,∠C=90°,AC=6,BC=8,半徑為1的⊙O與AC,BC相切,當⊙O沿邊CB平移至與AB相切時,則⊙O平移的距離為( 。
A.3B.4C.5D.6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為穩(wěn)步推進5G網(wǎng)絡建設,深化共建共享,當甲隊施工20天完成5G基站建設工程的時,乙隊加入該工程,結(jié)果比甲隊單獨施工提前25天完成了剩余的工程.
(1)若乙隊單獨施工,需要多少天才能完成該項工程?
(2)若乙隊參與該項工程施工的時間不超過12天,則甲隊從開始施工到完成該工程至少需要多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在“五一”假期間參加一項社會調(diào)查活動,在他所居住小區(qū)的600個家庭中,隨機調(diào)查了50個家庭人均月收入情況,并繪制了如下的頻數(shù)分布表和頻數(shù)分布直方圖(收入取整數(shù),單位:元).
分 組 | 頻 數(shù) | 頻 率 |
1000~1200 | 3 | 0.060 |
1200~1400 | 12 | 0.240 |
1400~1600 | 18 | 0.360 |
1600~1800 | 0.200 | |
1800~2000 | 5 | |
2000~2200 | 2 | 0.040 |
合計 | 50 | 1.000 |
請你根據(jù)以上提供的信息,解答下列問題:
⑴ 補全頻數(shù)分布表和頻數(shù)分布直方圖;
⑵ 這50個家庭人均月收入的中位數(shù)落在 小組;
⑶ 請你估算該小區(qū)600個家庭中人均月收入較低(不足1400元)的家庭個數(shù)大約有多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,皮皮小朋友燃放一種手持煙花,這種煙花每隔2秒發(fā)射一發(fā)花彈,每一發(fā)花彈的飛行路徑,爆炸時的高度均相同,皮皮小朋友發(fā)射出的第一發(fā)花彈的飛行高度(米)與飛行時間(秒)之間的函數(shù)圖像如圖2所示.
(1)求皮皮發(fā)射出的第一發(fā)花彈的飛行高度(米)與飛行時間(秒)之間的函數(shù)關(guān)系式;
(2)第一發(fā)花彈發(fā)射3秒后,第二發(fā)花彈達到的高度為多少米?
(3)為了安全,要求花彈爆炸時的高度不低于16米,皮皮發(fā)現(xiàn)在第一發(fā)花彈爆炸的同時,第二發(fā)花彈與它處于同一高度,請分析花彈的爆炸高度是否符合安全要求?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】山地自行車越來越受到中學生的喜愛,各種品牌相繼投放市場,某車行經(jīng)營的A型車去年銷售總額為5萬元,今年每輛銷售價比去年降低400元,若賣出的數(shù)量相同,銷售總額將比去年減少20%.
(1)今年A型車每輛售價多少元?(列方程解答)
(2)該車行計劃今年新進一批A型車和B型車共60輛,A型車的進貨價為每輛1100元,銷售價與(1)相同;B型車的進貨價為每輛1400元,銷售價為每輛2000元,且B型車的進貨數(shù)量不超過A型車數(shù)量的兩倍,應如何進貨才能使這批車獲利最多?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與反比例函數(shù)的圖象交于A(-1,3),B(3,)兩點,過點A作AC⊥x軸于點C,過點B作BD⊥x軸于點D.
(1)求一次函數(shù)及反比例函數(shù)的解析式;
(2)若點P在直線上,且S△ACP=2S△BDP,求點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com