【題目】如圖,將含30°的直角三角板ABC(∠A30°)繞其直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)α角(α90°),得到RtABC,ACAB交于點(diǎn)D,過(guò)點(diǎn)DDEABCB于點(diǎn)E,連接BE.易知,在旋轉(zhuǎn)過(guò)程中,BDE為直角三角形.設(shè)BC1ADx,BDE的面積為S

1)當(dāng)α30°時(shí),求x的值.

2)求Sx的函數(shù)關(guān)系式,并寫(xiě)出x的取值范圍;

3)以點(diǎn)E為圓心,BE為半徑作⊙E,當(dāng)S時(shí),判斷⊙EAC的位置關(guān)系,并求相應(yīng)的tanα值.

【答案】(1)x=1;(2)S= ;(3)

【解析】

(1)根據(jù)等腰三角形的判定, ∠A=∠a30°,得出 x1.(2)由直角三角形的性質(zhì),AB=2,AC=,由旋轉(zhuǎn)性質(zhì)求得△ADC∽△BEC,根據(jù)比例關(guān)系式,求出S與x的函數(shù)關(guān)系式.(3)當(dāng)ssABC時(shí),求得x的值,判斷⊙E和DE的長(zhǎng)度大小,確定⊙EAC的位置關(guān)系,再求tanα值.

解:(1)∵∠A=∠a30°,

又∵∠ACB90°,

∴∠ABC=∠BCD60°

ADBDBC1

x1;

2)∵∠DBE90°,∠ABC60°,

∴∠A=∠CBE30°

ACBC,AB2BC2

由旋轉(zhuǎn)性質(zhì)可知:ACACBCBC,

ACD=∠BCE

∴△ADC∽△BEC,

,

BEx

BD2x

s×x2x)=﹣x2+x.(0x2

(3)ssABC

∴﹣+

4x28x+30,

①當(dāng)x時(shí),BD2BE×

DE

DEAB,

∴∠EDC=∠A=∠A30°

ECDEBE

∴此時(shí)⊙EAC相離.

過(guò)DDFACF,則

12分)

②當(dāng)時(shí),,

,

此時(shí)EA'C相交.

同理可求出

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,點(diǎn)EAD邊上一點(diǎn),AEED12,連接AC、BE交于點(diǎn)F.SAEF1,則S四邊形CDEF_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)共有3個(gè)一樣規(guī)模的大餐廳和2個(gè)一樣規(guī)模的小餐廳,經(jīng)過(guò)測(cè)試同時(shí)開(kāi)放2個(gè)大餐廳和1個(gè)小餐廳,可供3000名學(xué)生就餐;同時(shí)開(kāi)放1個(gè)大餐廳,1個(gè)小餐廳,可供1700名學(xué)生就餐.

(1)請(qǐng)問(wèn)1個(gè)大餐廳、1個(gè)小餐廳分別可供多少名學(xué)生就餐.

(2)如果3個(gè)大餐廳和2個(gè)小餐廳全部開(kāi)放,那么能否供全校4500名學(xué)生就餐?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“低碳生活,綠色出行”是我們倡導(dǎo)的一種生活方式,有關(guān)部門(mén)抽樣調(diào)查了某單位員工上下班的交通方式,繪制了如下統(tǒng)計(jì)圖:

1)樣本中的總?cè)藬?shù)為 ,開(kāi)私家車(chē)的人數(shù) ,扇形統(tǒng)計(jì)圖中“騎自行車(chē)”所在扇形的圓心角為 度;(直接寫(xiě)出答案)

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)該單位共有500人,積極踐行這種生活方式,越來(lái)越多的人上下班由開(kāi)私家車(chē)改為騎自行車(chē).若步行、坐公交車(chē)上下班的人數(shù)保持不變,問(wèn)原來(lái)開(kāi)私家車(chē)的人中至少有多少人改為騎自行車(chē),才能使騎自行車(chē)的人數(shù)不低于開(kāi)私家車(chē)的人數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】撫順市某校想知道學(xué)生對(duì)遙遠(yuǎn)的赫?qǐng)D阿拉”,“旗袍故里等家鄉(xiāng)旅游品牌的了解程度,隨機(jī)抽取了部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,問(wèn)卷有四個(gè)選項(xiàng)(每位被調(diào)查的學(xué)生必選且只選一項(xiàng))A.十分了解,B.了解較多,C.了解較少,D.不知道.將調(diào)查的結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問(wèn)題:

(1)本次調(diào)查了多少名學(xué)生?

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)該校共有500名學(xué)生,請(qǐng)你估計(jì)十分了解的學(xué)生有多少名?

(4)在被調(diào)查十分了解的學(xué)生中有四名學(xué)生會(huì)干部,他們中有3名男生和1名女生,學(xué)校想從這4人中任選兩人做家鄉(xiāng)旅游品牌宣傳員,請(qǐng)用列表或畫(huà)樹(shù)狀圖法求出被選中的兩人恰好是一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖1,點(diǎn)A (1, 0),B(0,2),將點(diǎn)B沿x軸正方向平移3個(gè)單位長(zhǎng)度得到對(duì)應(yīng)點(diǎn)B,點(diǎn)B恰在反比例函數(shù)y (x0)的圖象上.

(1)k的值;

(2)如圖2,將AOB (點(diǎn)O為坐標(biāo)原點(diǎn))沿AB翻折得到ACB,求點(diǎn)C的坐標(biāo);

(3)是否存在這樣的點(diǎn)P,以P為位似中心,將AOB放大為原來(lái)的兩倍后得到DEF (DEF∽△AOB,且相似比為2),使得點(diǎn)D、F恰好在反比例函數(shù)y(x0) 的圖象上?若存在,請(qǐng)求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在菱形中,分別為邊,,上的點(diǎn)(不與端點(diǎn)重合).對(duì)于任意菱形,下面四個(gè)結(jié)論中:①存在無(wú)數(shù)個(gè)四邊形是平行四邊形;②存在無(wú)數(shù)個(gè)四邊形是菱形;③存在無(wú)數(shù)個(gè)四邊形是矩形;④存在無(wú)數(shù)個(gè)四邊形是正方形;所有正確結(jié)論的序號(hào)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC 中,AB=AC BAC 60°,將線段 AB 繞點(diǎn) A逆時(shí)針旋轉(zhuǎn) 60°得到點(diǎn) D, 點(diǎn) E 與點(diǎn) D 關(guān)于直線 BC 對(duì)稱(chēng),連接 CD,CEDE

1)依題意補(bǔ)全圖形;

2)判斷△CDE 的形狀,并證明;

3)請(qǐng)問(wèn)在直線CE上是否存在點(diǎn) P,使得 PA - PB =CD 成立?若存在,請(qǐng)用文字描述出點(diǎn) P 的準(zhǔn)確位置,并畫(huà)圖證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】按要求作圖,不要求寫(xiě)作法,但要保留作圖痕跡.

1)如圖1,矩形ABCD的頂點(diǎn)A、D在圓上, B、C兩點(diǎn)在圓內(nèi),已知圓心O,請(qǐng)僅用無(wú)刻度的直尺作圖,請(qǐng)作出直線lAD

2)請(qǐng)僅用無(wú)刻度的直尺在下列圖2和圖3中按要求作圖.(補(bǔ)上所作圖形頂點(diǎn)字母)

①圖2是矩形ABCD,EF分別是ABAD的中點(diǎn),以EF為邊作一個(gè)菱形;

②圖3是矩形ABCDE是對(duì)角線BD上任意一點(diǎn)(BEDE),以AE為邊作一個(gè)平行四邊形.

查看答案和解析>>

同步練習(xí)冊(cè)答案