如圖1,在矩形ABCD中,AB=6cm,BC=12cm,點P從點A開始以1cm/s的速度沿AB邊向點B運動,點Q從點B以2cm/s的速度沿BC邊向點C運動,如果P、Q同時出發(fā),設運動時間為ts,
(1)當t=2時,求△PBQ的面積;
(2)當t=
32
時,試說明△DPQ是直角三角形;
(3)當運動3s時,P點停止運動,Q點以原速立即向B點返回,在返回的過程中,DP是否能平分∠ADQ?若能,求出點Q運動的時間;若不能,請說明理由.
精英家教網(wǎng)
分析:(1)易得PB和BQ的長度,那么△PBQ的面積=
1
2
×PB×BQ把相關數(shù)值代入即可求解;
(2)利用勾股定理可得DP,PQ,DQ的長度,證明DQ2+PQ2=DP2即可;
(3)易得AP=3,Q在BC上.設出BQ的長度為x,則利用相似可得OB與OA,根據(jù)12:DO=AP:PO,可得x的值,求得相應時間加上原來的3秒即為所求時間.
解答:解:(1)當t=2時,AP=t=2,BQ=2t=4,
∴BP=AB-AP=4,
∴△PBQ的面積=
1
2
×4×4=8;

(2)當t=
3
2
時,AP=1.5,PB=4.5,BQ=3,CQ=9,
∴DP2=AD2+AP2=2.25+144=146.25,PQ2=PB2+BQ2=29.25,DQ2=CD2+CQ2=117,
∵PQ2+DQ2=DP2
∴∠DQP=90°,
∴△DPQ是直角三角形.

(3)設存在點Q在BC上,延長DQ與AB延長線交于點O.精英家教網(wǎng)
設QB的長度為x,則QC的長度為(12-x),
∵DC∥BO,
∴∠C=∠QBO,∠CDQ=∠O,
∴△CDQ∽△BOQ,又CD=6,QB=x,QC=12-x,
CQ
BQ
=
CD
BO
,即
12-x
x
=
6
BO
,
解得:BO=
6x
12-x

∴AO=AB+BO=6+
6x
12-x
=
72
12-x
,
∴DO=
72
12-x
2
+ 36
,PO=
36+3x
12-x
,
∵∠ADP=∠ODP,
∴12:DO=AP:PO,
代入解得x=0.75,
∴DP能平分∠ADQ,
∵點Q的速度為2cm/s,
∴P停止后Q往B走的路程為(6-0.75)=5.25cm.
∴時間為2.625s,加上剛開始的3s,Q點的運動時間為5.625s.
點評:用到的知識點為:直角三角形的面積等于兩直角邊積的一半;若三角形的三邊a,b,c符合a2+b2=c2
那么∠C=90°;相似三角形的對應邊成比例;三角形的角平分線分對邊的比等于另兩邊之比.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

24、如圖,已知:AD是△ABC中BC邊的中線,則S△ABD=S△ACD,依據(jù)是
等底等高的三角形面積相等

規(guī)定;若一條直線l把一個圖形分成面積相等的兩個圖形,則稱這樣的直線l叫做這個圖形的等積直線.根據(jù)此定義,在圖1中易知直線為△ABC的等積直線.
(1)如圖2,在矩形ABCD中,直線l經(jīng)過AD,BC邊的中點M、N,請你判斷直線l是否為該矩形的等積直線
(填“是”或“否”).在圖2中再畫出一條該矩形的等積直線.(不必寫作法)
(2)如圖3,在梯形ABCD中,直線l經(jīng)過上下底AD、BC邊的中點M、N,請你判斷直線l是否為該梯形的等積直線
(填“是”或“否”).
(3)在圖3中,過M、N的中點O任作一條直線PQ分別交AD,BC于點P、Q,如圖4所示,猜想PQ是否為該梯形的等積直線?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•濟南)(1)如圖1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且點B,C,E在一條直線上.
求證:∠A=∠D.
(2)如圖2,在矩形ABCD中,對角線AC,BD相交于點O,AB=4,∠AOD=120°,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•河北一模)如圖1,在矩形ABCD中,動點P從點B出發(fā),沿BC,CD運動至點D停止,設點P運動的路程為x,△ABP的面積為y,y關于x的函數(shù)圖象如圖2所示,則△ABC的面積是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如果一條直線能夠將一個封閉圖形的周長和面積同時平分,那么就把這條直線稱作這個封閉圖形的二分線.

(1)請在圖1的三個圖形中,分別作一條二分線.
(2)請你在圖2中用尺規(guī)作圖法作一條直線 l,使得它既是矩形的二分線,又是圓的二分線.(保留作圖痕跡,不寫畫法).
(3)如圖3,在Rt△ABC中,∠A=90°,AB=3,AC=4,是否存在過AB邊上的點P的二分線?若存在,求出AP的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

數(shù)學學習總是如數(shù)學知識自身的生長歷史一樣,往往起源于猜測中的發(fā)現(xiàn),我們所發(fā)現(xiàn)的不一定對,但是當利用我們已有的知識作為推理的前提論證之后,當所發(fā)現(xiàn)的在邏輯上沒有矛盾之后,就可以作為新的推理的前提,數(shù)學中稱之為定理.
(1)嘗試證明:
等腰三角形的探索中借助折紙發(fā)現(xiàn):直角三角形斜邊上的中線等于斜邊的一半.但是當時并未說明這個結論的合理.現(xiàn)在我們學些了矩形的判定和性質之后,就可以解決這個問題了.如圖1若在Rt△ABC中CD是斜邊AB的中線,則CD=
12
AB
,你能用矩形的性質說明這個結論嗎?請說明.
(2)遷移運用:利用上述結論解決下列問題:
①如圖2所示,四邊形ABCD中,∠BAD=90°,∠DCB=90°,EF分別是BD、AC的中點,請你說明EF與AC的位置關系.
②如圖3所示,?ABCD中,以AC為斜邊作Rt△ACE,∠AEC=90°,且∠BED=90°,試說明平行四邊形ABCD是矩形.

查看答案和解析>>

同步練習冊答案