如圖,已知△ABC是等邊三角形,點O是BC上任意一點,OE,OF分別于兩邊垂直,等邊三角形的高為2,則OE+OF的值為( 。
分析:利用等邊三角形的特殊角求出OE與OF的和,可得出其與三角形的高相等,進而可得出結論.
解答:解:∵△ABC是等邊三角形,
∴AB=BC=AC,∠A=∠B=∠C=60°
又∵OE⊥AB,OF⊥AC,∠B=∠C=60°,
∴OE=OB•sin60°=
3
2
OB,同理OF=
3
2
OC.
∴OE+OF=
3
2
(OB+OC)=
3
2
BC.
在等邊△ABC中,高h=
3
2
AB=
3
2
BC.
∴OE+OF=h.
又∵等邊三角形的高為2,
∴OE+OF=2,
故選C.
點評:本題考查了等邊三角形的性質(zhì):等邊三角形的三個內(nèi)角都相等,且都等于60°;三條邊都相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC是邊長為4的正三角形,AB在x軸上,點C在第一象限,AC與y軸交于點D,點A精英家教網(wǎng)的坐標為(-1,0).
(1)寫出B,C,D三點的坐標;
(2)若拋物線y=ax2+bx+c經(jīng)過B,C,D三點,求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC是等邊三角形,AB交⊙O于點D,DE⊥AC于點E.
(1)求證:DE為⊙O的切線.
(2)已知DE=3,求:弧BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC是等邊三角形,E是AC延長線上一點,選擇一點D,使得△CDE是等邊三角形,如果M是線段AD的中點,N是線段BE的中點,
求證:△CMN是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•襄城區(qū)模擬)如圖,已知△ABC是等邊三角形,D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點F,使EF=AE,連接AF、BE和CF.
(1)求證:△BCE≌△FDC;
(2)判斷四邊形ABDF是怎樣的四邊形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•奉賢區(qū)二模)如圖,已知△ABC是等邊三角形,點D是BC延長線上的一個動點,以AD為邊作等邊△ADE,過點E作BC的平行線,分別交AB,AC的延長線于點F,G,聯(lián)結BE.
(1)求證:△AEB≌△ADC;
(2)如果BC=CD,判斷四邊形BCGE的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案