平面直角坐標(biāo)系中,⊙M的圓心坐標(biāo)為(0,2),半徑為1,點(diǎn)N在x軸的正半軸上,如果以點(diǎn)N為圓心,半徑為4的⊙N與⊙M相切,則圓心N的坐標(biāo)為   
【答案】分析:由⊙M與⊙N相切,⊙M的半徑為1,⊙N的半徑為4,可分別從⊙M與⊙N內(nèi)切或外切去分析,然后根據(jù)勾股定理即可求得答案.
解答:解:①⊙M與⊙N外切,
MN=4+1=5,
ON==,
圓心N的坐標(biāo)為(,0);
②⊙M與⊙N內(nèi)切,
MN=4-1=3,
ON==,
圓心N的坐標(biāo)為(,0);
故答案為:(,0)或(,0).
點(diǎn)評:考查了坐標(biāo)與圖形性質(zhì),相切兩圓的性質(zhì),解題的關(guān)鍵是注意掌握兩圓位置關(guān)系中相切可以從內(nèi)切或外切去分析.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平面直角坐標(biāo)系中有一直角梯形OMNH,點(diǎn)H的坐標(biāo)為(-8,0),點(diǎn)N的坐標(biāo)為(-6,-4).
(1)畫出直角梯形OMNH繞點(diǎn)O旋轉(zhuǎn)180°的圖形OABC,并寫出頂點(diǎn)A,B,C的坐標(biāo)(點(diǎn)M的對應(yīng)點(diǎn)為A,點(diǎn)N的對應(yīng)點(diǎn)為B,點(diǎn)H的對應(yīng)點(diǎn)為C);
(2)求出過A,B,C三點(diǎn)的拋物線的表達(dá)式;
(3)試設(shè)計一種平移使(2)中的拋物線經(jīng)過四邊形ABCO的對角線交點(diǎn);
(4)截取CE=OF=AG=m,且E,F(xiàn),G分別在線段CO,OA,AB上,四邊精英家教網(wǎng)形BEFG是否存在鄰邊相等的情況?若存在,請直接寫出此時m的值,并指出相等的鄰邊;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系中,以O(shè)(0,0),A(1,1),B(3,0)為頂點(diǎn),構(gòu)造平行四邊形,則第四個頂點(diǎn)的坐標(biāo)可以是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

8、在平面直角坐標(biāo)系中,對于平面內(nèi)任一點(diǎn)(a,b),若規(guī)定以下三種變換:
1、f(a,b)=(-a,b).如:f(1,3)=(-1,3);
2、g(a,b)=(b,a).如:g(1,3)=(3,1);
3、h(a,b)=(-a,-b).如:h(1,3)=(-1,-3).
按照以上變換有:f(g(2,-3))=f(-3,2)=(3,2),那么f(h(5,-3))等于(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、在平面直角坐標(biāo)系中,將直線y=-2x+1向下平移4個單位長度后.所得直線的解析式為
y=-2x-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、下列說法中,正確的有( 。
①無限小數(shù)不一定是無理數(shù)
②矩形具有的性質(zhì)平行四邊形一定具有.
③平面直角坐標(biāo)系中的點(diǎn)與有序?qū)崝?shù)對是一一對應(yīng)的.
④一個數(shù)平方根與這個數(shù)的立方根相同的數(shù)是0和1.

查看答案和解析>>

同步練習(xí)冊答案