已知關于x的方程(a-2)x2-2(a-1)x+(a+1)=0,當a為何值時
(1)方程只有一個實數(shù)根;(不包括等根情況)
(2)方程有兩個實數(shù)根;
(3)無實數(shù)根.
【答案】分析:(1)方程只有一個實數(shù)根;(不包括等根情況),即方程是一元一次方程,則二次項系數(shù)等于0,一次項系數(shù)不等于0,從而求解;
(2)方程有兩個實數(shù)根,則方程是一元二次方程,且△≥0,即可求得a的范圍;
(3)方程無實數(shù)根,則判別式△<0.
解答:解:(1)若方程只有一個實數(shù)根,并且不包括等根情況,
∴a-2=0,即a=2,
此時方程為:-2x+3=0,方程為一元一次方程,
∴一定只有一個實數(shù)根,
∴a=2時方程只有一個實數(shù)根(不包括等根情況);
(2)若方程有兩個實數(shù)根,
則a-2≠0,且△=b2-4ac=4(a-1)2-4(a-2)(a+1)≥0,
∴整理得出:
-4a+12≥0,
∴a≤3且a≠2,∴當a≤3且a≠2時方程有兩個實數(shù)根;
(3)若方程無實數(shù)根,
則a-2≠0,且△=b2-4ac=4(a-1)2-4(a-2)(a+1)<0,
∴a<3.
∴當a<3,且a≠2時,方程無實數(shù)根.
點評:總結:一元二次方程根的情況與判別式△的關系:
(1)△>0?方程有兩個不相等的實數(shù)根;
(2)△=0?方程有兩個相等的實數(shù)根;
(3)△<0?方程沒有實數(shù)根.
此題切記不要忽略一元二次方程二次項系數(shù)不為零這一隱含條件.