【題目】已知在△ABC中,AC=BC=m,D是AB邊上的一點(diǎn),將∠B沿著過點(diǎn)D的直線折疊,使點(diǎn)B落在AC邊的點(diǎn)P處(不與點(diǎn)A,C重合),折痕交BC邊于點(diǎn)E.
(1)特例感知 如圖1,若∠C=60°,D是AB的中點(diǎn),求證:AP=AC;
(2)變式求異 如圖2,若∠C=90°,m=6,AD=7,過點(diǎn)D作DH⊥AC于點(diǎn)H,求DH和AP的長;
(3)化歸探究 如圖3,若m=10,AB=12,且當(dāng)AD=a時(shí),存在兩次不同的折疊,使點(diǎn)B落在AC邊上兩個(gè)不同的位置,請直接寫出a的取值范圍.
【答案】(1)證明見解析;(2),4或3;(3)6≤a<.
【解析】
(1)根據(jù)等邊三角形的性質(zhì),運(yùn)用等邊三角形內(nèi)角都為60°以及三邊相等進(jìn)行求解.
(2)根據(jù)相似三角形的性質(zhì),運(yùn)用對應(yīng)邊成比例以及勾股定理進(jìn)行求解.
(3)根據(jù)三角函數(shù)以及三線合一性質(zhì),運(yùn)用勾股定理以及比例關(guān)系進(jìn)行求解.
(1)證明:∵AC=BC,∠C=60°,
∴△ABC是等邊三角形,
∴AC=AB,∠A=60°,
由題意,得DB=DP,DA=DB,
∴DA=DP,
∴△ADP使得等邊三角形,
∴AP=AD=AB=AC.
(2)解:∵AC=BC=6,∠C=90°,
∴AB===12,
∵DH⊥AC,
∴DH∥BC,
∴△ADH∽△ABC,
∴=,
∵AD=7,
∴=,
∴DH=,
將∠B沿過點(diǎn)D的直線折疊,
情形一:當(dāng)點(diǎn)B落在線段CH上的點(diǎn)P1處時(shí),如圖2﹣1中,
∵AB=12,
∴DP1=DB=AB﹣AD=5,
∴HP1===,
∴A1=AH+HP1=4,
情形二:當(dāng)點(diǎn)B落在線段AH上的點(diǎn)P2處時(shí),如圖2﹣2中,
同法可證HP2=,
∴AP2=AH﹣HP2=3,
綜上所述,滿足條件的AP的值為4或3.
(3)如圖3中,過點(diǎn)C作CH⊥AB于H,過點(diǎn)D作DP⊥AC于P.
∵CA=CB,CH⊥AB,
∴AH=HB=6,
∴CH===8,
當(dāng)DB=DP時(shí),設(shè)BD=PD=x,則AD=12﹣x,
∵tanA==,
∴=,
∴x=,
∴AD=AB﹣BD=,
觀察圖形可知當(dāng)6≤a<時(shí),存在兩次不同的折疊,使點(diǎn)B落在AC邊上兩個(gè)不同的位置.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)A的坐標(biāo)是A(x,y),從1、2、3這三個(gè)數(shù)中任取一個(gè)數(shù)作為x的值,再從余下的兩個(gè)數(shù)中任取一個(gè)數(shù)作為y的值.則點(diǎn)A落在直線y=﹣x+5與直線y=x及y軸所圍成的封閉區(qū)域內(nèi)(含邊界)的概率是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鄂爾多斯市加快國家旅游改革先行示范區(qū)建設(shè),越來越多的游客慕名而來,感受鄂爾多斯市“24℃夏天的獨(dú)特魅力”,市旅游局工作人員依據(jù)2016年7月份鄂爾多斯市各景點(diǎn)的游客數(shù)量,繪制了如下尚不完整的統(tǒng)計(jì)圖;
根據(jù)以上信息解答下列問題:
(1)2016年7月份,鄂爾多斯市共接待游客 萬人,扇形統(tǒng)計(jì)圖中烏蘭木倫景觀湖所對應(yīng)的圓心角的度數(shù)是 ,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)預(yù)計(jì)2017年7月份約有200萬人選擇來鄂爾多斯市旅游,通過計(jì)算預(yù)估其中選擇去響沙灣旅游的人數(shù);
(3)甲、乙兩個(gè)旅行團(tuán)準(zhǔn)備去響沙灣、成吉思汗陵、蒙古源流三個(gè)景點(diǎn)旅游,若這三個(gè)景點(diǎn)分別記作a、b、c,請用樹狀圖或列表法求他們選擇去同一個(gè)景點(diǎn)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果商計(jì)劃購進(jìn)甲、乙兩種水果進(jìn)行銷售,經(jīng)了解,甲種水果的進(jìn)價(jià)比乙種水果的進(jìn)價(jià)每千克少4元,且用800元購進(jìn)甲種水果的數(shù)量與用1000元購進(jìn)乙種水果的數(shù)量相同.
(1)求甲、乙兩種水果的單價(jià)分別是多少元?
(2)該水果商根據(jù)該水果店平常的銷售情況確定,購進(jìn)兩種水果共200千克,其中甲種水果的數(shù)量不超過乙種水果數(shù)量的3倍,且購買資金不超過3420元,購回后,水果商決定甲種水果的銷售價(jià)定為每千克20元,乙種水果的銷售價(jià)定為每千克25元,則水果商應(yīng)如何進(jìn)貨,才能獲得最大利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在每個(gè)小正方形的邊長為1的網(wǎng)格圖形中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),頂點(diǎn)都是格點(diǎn)的三角形稱為格點(diǎn)三角形.如圖,已知Rt△ABC是6×6網(wǎng)格圖形中的格點(diǎn)三角形,則該圖中所有與Rt△ABC相似的格點(diǎn)三角形中.面積最大的三角形的斜邊長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D在AC上,點(diǎn)E在BA的延長線上,且CD=AE過點(diǎn)A作AF⊥CE,垂足為F,過點(diǎn)D作BC的平行線,交AB于點(diǎn)G,交FA的延長線于點(diǎn)H.
(1)求證∠ACE=∠BAH;
(2)在圖中找出與CE相等的線段,并證明;
(3)若GH=DH,求的值(用含的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文體商店計(jì)劃購進(jìn)一批同種型號的籃球和同種型號的排球,每一個(gè)排球的進(jìn)價(jià)是每一個(gè)籃球的進(jìn)價(jià)的90%,用3600元購買排球的個(gè)數(shù)要比用3600元購買籃球的個(gè)數(shù)多10個(gè).
(1)問每一個(gè)籃球、排球的進(jìn)價(jià)各是多少元?
(2)該文體商店計(jì)劃購進(jìn)籃球和排球共100個(gè),且排球個(gè)數(shù)不低于籃球個(gè)數(shù)的3倍,籃球的售價(jià)定為每一個(gè)100元,排球的售價(jià)定為每一個(gè)90元.若該批籃球、排球都能賣完,問該文體商店應(yīng)購進(jìn)籃球、排球各多少個(gè)才能獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)欲開設(shè)A實(shí)心球、B立定跳遠(yuǎn)、C跑步、D足球四種體育活動,為了了解學(xué)生們對這些項(xiàng)目的選擇意向,隨機(jī)抽取了部分學(xué)生,并將調(diào)查結(jié)果繪制成圖1、圖2,請結(jié)合圖中的信息,解答下列問題:
(1)本次共調(diào)查了 名學(xué)生;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)求扇形的圓心角的度數(shù);
(4)某班喜歡“跑步”的學(xué)生有4名,其中有2名男生,2名女生,現(xiàn)從這4名學(xué)生中選取2名,請用畫樹狀圖或列表的方法,求出剛好抽到同性的概率。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=-2x+4與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,將△AOB沿直線AB翻折后,設(shè)點(diǎn)O的對應(yīng)點(diǎn)為點(diǎn)C,雙曲線y=(x>0)經(jīng)過點(diǎn)C,則k的值為____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com