【題目】如圖,O是等邊△ABC內(nèi)一點(diǎn),OA=6,OB=8,OC=10,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO',下列結(jié)論:①△BO'A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;②點(diǎn)O與O'的距離為8;③四邊形AOBO'的面積為24+15; ④∠AOB=150°;⑤s△AOC+S△AOB=9+24,其中正確的結(jié)論是_____.
【答案】①②④⑤.
【解析】
①證明△BO′A≌△BOC即可說(shuō)明△BO'A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;
②根據(jù)旋轉(zhuǎn)的性質(zhì)可知△BOO′是等邊三角形,則點(diǎn)O與O'的距離為8,②正確;
③利用:四邊形AOBO'的面積=等邊△BOO′面積+Rt△AOO′面積,進(jìn)行計(jì)算即可判斷;
④∠AOB=∠AOO′+∠BOO′=90°+60°=150°,④正確;
⑤模仿原圖的旋轉(zhuǎn)方法,將線段,AO以點(diǎn)A為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)60°得到線段AO',連接OO′,根據(jù)△AOC面積+△AOB面積=四邊形AO′BO面積=△AOO′面積+△BOO′即可判斷.
在△BO′A和△BOC中,BO’=BO,∠O’BA=∠OBA,BA=BC
∴△BO′A≌△BOC(SAS).
∴O′A=OC.
∴△BO'A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到,①正確;
如圖1,連接OO′,根據(jù)旋轉(zhuǎn)的性質(zhì)可知△BOO′是等邊三角形,
∴點(diǎn)O與O'的距離為8,②正確;
在△AOO′中,AO=6,OO′=8,AO′=10,
∴△AOO′是直角三角形,∠AOO′=90°.
∴Rt△AOO′面積為×6×8=24,
又等邊△BOO′面積為×8×4=16,
∴四邊形AOBO'的面積為24+16,③錯(cuò)誤;
∠AOB=∠AOO′+∠BOO′=90°+60°=150°,④正確;
如圖2,將線段,AO以點(diǎn)A為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)60°得到線段AO',連接OO′,
則△AO′B≌△AOC(SAS),
△BOO′是直角三角形,∠BOO′=90°,
△AOO′是等邊三角形,
所以△AOC面積+△AOB面積=四邊形AO′BO面積=△AOO′面積+△BOO′=9+24,⑤正確.
故答案為①②④⑤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線.
(1)求證:該拋物線與x軸總有交點(diǎn);
(2)若該拋物線與x軸有一個(gè)交點(diǎn)的橫坐標(biāo)大于3且小于5,求m的取值范圍;
(3)設(shè)拋物線與軸交于點(diǎn)M,若拋物線與x軸的一個(gè)交點(diǎn)關(guān)于直線的對(duì)稱(chēng)點(diǎn)恰好是點(diǎn)M,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在ABCD中,E、F分別是AD、BC上的點(diǎn),將平行四邊形ABCD沿EF所在直線翻折,使點(diǎn)B與點(diǎn)D重合,且點(diǎn)A落在點(diǎn)A′處.
(1)求證:△A′ED≌△CFD;
(2)連結(jié)BE,若∠EBF=60°,EF=3,求四邊形BFDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們常見(jiàn)的炒菜鍋和鍋蓋都是拋物線面,經(jīng)過(guò)鍋心和蓋心的縱斷面是兩端拋物線組合而成的封閉圖形,不妨簡(jiǎn)稱(chēng)為“鍋線”,鍋口直徑為,鍋深,鍋蓋高(鍋口直徑與鍋蓋直徑視為相同),建立直角坐標(biāo)系如圖①所示(圖②是備用圖),如果把鍋縱斷面的拋物線記為,把鍋蓋縱斷面的拋物線記為.
求和的解析式;
如果炒菜鍋時(shí)的水位高度是,求此時(shí)水面的直徑;
如果將一個(gè)底面直徑為,高度為的圓柱形器皿放入炒菜鍋內(nèi)蒸食物,鍋蓋能否正常蓋上?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,過(guò)點(diǎn)A(﹣6,0)的直線l1與直線l2:y=2x相交于點(diǎn)B(m,6)
(1)求直線l1的表達(dá)式
(2)直線l1與y軸交于點(diǎn)M,求△BOM的面積;
(3)過(guò)動(dòng)點(diǎn)P(m,0)且垂于x軸的直線與l1,l2的交點(diǎn)分別為C,D,當(dāng)點(diǎn)C位于點(diǎn)D下方時(shí),寫(xiě)出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】紅星公司生產(chǎn)的某種時(shí)令商品每件成本為20元,經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),這種商品在未來(lái)40天內(nèi)的日銷(xiāo)售量y1(件)與時(shí)間t(天)的關(guān)系如圖所示;未來(lái)40天內(nèi),每天的價(jià)格y2(元/件)與時(shí)間t(天)的函數(shù)關(guān)系式為:y2=(t為整數(shù));
(1)求日銷(xiāo)售量y1(件)與時(shí)間t(天)的函數(shù)關(guān)系式;
(2)請(qǐng)預(yù)測(cè)未來(lái)40天中哪一天的銷(xiāo)售利潤(rùn)最大,最大日銷(xiāo)售利潤(rùn)是多少?
(3)在實(shí)際銷(xiāo)售的前20天中該公司決定銷(xiāo)售一件商品就捐贈(zèng)a元(a為定值)利潤(rùn)給希望工程.公司通過(guò)銷(xiāo)售記錄發(fā)現(xiàn),前20天中,第18天的時(shí)候,扣除捐贈(zèng)后日銷(xiāo)售利潤(rùn)為這20天中的最大值,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某數(shù)學(xué)社團(tuán)成員想利用所學(xué)的知識(shí)測(cè)量某廣告牌的寬度圖中線段MN的長(zhǎng),直線MN垂直于地面,垂足為點(diǎn)在地面A處測(cè)得點(diǎn)M的仰角為、點(diǎn)N的仰角為,在B處測(cè)得點(diǎn)M的仰角為,米,且A、B、P三點(diǎn)在一直線上請(qǐng)根據(jù)以上數(shù)據(jù)求廣告牌的寬MN的長(zhǎng).
參考數(shù)據(jù):,,,,,
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線y=-3x+c與x軸相交于點(diǎn)A(1,0),與y軸相交于點(diǎn)B,拋物線y=-x2+bx+c經(jīng)過(guò)點(diǎn)A,B,與x軸的另一個(gè)交點(diǎn)是C.
(1)求拋物線的解析式;
(2)點(diǎn)P是對(duì)稱(chēng)軸的左側(cè)拋物線上的一點(diǎn),當(dāng)S△PAB=2S△AOB時(shí),求點(diǎn)P的坐標(biāo);
(3)連接BC,拋物線上是否存在點(diǎn)M,使∠MCB=∠ABO?若存在,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y= 與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(1)求直線AC的解析式;
(2)如圖2,點(diǎn)E(a,b)是對(duì)稱(chēng)軸右側(cè)拋物線上一點(diǎn),過(guò)點(diǎn)E垂直于y軸的直線與AC交于點(diǎn)D(m,n).點(diǎn)P是x軸上的一點(diǎn),點(diǎn)Q是該拋物線對(duì)稱(chēng)軸上的一點(diǎn),當(dāng)a+m最大時(shí),求點(diǎn)E的坐標(biāo),并直接寫(xiě)出EQ+PQ+PB的最小值;
(3)如圖3,在(2)的條件下,連結(jié)OD,將△AOD沿x軸翻折得到△AOM,再將△AOM沿射線CB的方向以每秒3個(gè)單位的速度沿平移,記平移后的△AOM為△A′O'M',同時(shí)拋物線以每秒1個(gè)單位的速度沿x軸正方向平移,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B'.△A'B'M'能否為等腰三角形?若能,請(qǐng)求出所有符合條件的點(diǎn)M'的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com