如圖,⊙O是△ABC的外接圓,∠A=30°,BC=6,則⊙O的半徑為   
【答案】分析:連接OB,OC,根據(jù)有一個角是60度的等腰三角形是等邊三角形,即可求解.
解答:解:連接OB,OC.
∵∠BOC=2∠A=2×30°=60°,
又∵OB=OC,
∴△OBC是等邊三角形.
∴OB=BC=6.
故答案是:6.
點評:本題主要考查了圓周角定理,以及等邊三角形的判定,正確作出輔助線,證得△OBC是等邊三角形是關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,⊙O是△ABC的外接圓,OD⊥AB于點D、交⊙O于點E,∠C=60°,如果⊙O的半徑為2,那么OD=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、如圖,AD是△ABC的高,且AD平分∠BAC,請指出∠B與∠C的關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•雅安)如圖,DE是△ABC的中位線,延長DE至F使EF=DE,連接CF,則S△CEF:S四邊形BCED的值為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•黔東南州)如圖,⊙O是△ABC的外接圓,圓心O在AB上,過點B作⊙O的切線交AC的延長線于點D.
(1)求證:△ABC∽△BDC.
(2)若AC=8,BC=6,求△BDC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,BD是∠ABC的平分線,DE⊥AB于E,S△ABC=90,AB=18,BC=12,求DE的長.

查看答案和解析>>

同步練習冊答案