精英家教網 > 初中數學 > 題目詳情

【題目】如圖所示,在邊長為2的正三角形ABC中,E、F、G分別為ABAC、BC的中點,點P為線段EF上一個動點,連接BP、GP,則△BPG的周長的最外值是____________

【答案】3.

【解析】連接AG交EF于M,根據等邊三角形的性質證明A、G關于EF對稱,得到P,△PBG周長最小,求出AB+BG即可得到答案.

解:要使△PBG的周長最小,而BG=1一定,只要使BP+PG最短即可,
連接AG交EF于M,


∵等邊△ABC,E、F、G分別為AB、AC、BC的中點,
∴AG⊥BC,EF∥BC,
∴AG⊥EF,AM=MG,
∴A、G關于EF對稱,
即當P和E重合時,此時BP+PG最小,即△PBG的周長最小,
AP=PG,BP=BE,
最小值是:PB+PG+BG=AE+BE+BG=AB+BG=2+1=3.
故答案為:3.
“點睛”本題主要考查對等邊三角形的性質,軸對稱-最短路線問題,平行線分線段成比例定理等知識點的理解和掌握,能求出BP+PG的最小值是解此題的關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】調查某種家用電器的使用壽命,合適的調查方法是______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】拋物線y=x2﹣2x﹣3與x軸的交點坐標為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若y=kx+2的函數值y隨著x的增大而增大,則k的值可能是( )
A.0
B.1
C.-30
D.-2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】列運算正確的是( 。

A. (﹣a32=a9 B. (﹣a2a3=a5 C. 2aa+b=2a2+2a D. a5+a5=a10

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】有兩根鐵絲,第一根用去米,第二根用去,剩下的一樣長,兩根鐵絲原來相比(

A. 第一根長 B. 第二根長 C. 一樣長 D. 無法確定

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】絕對值小于2的整數有_______個,它們是______________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,銳角△ABC的兩條高BD、CE相交于點O,且OBOC.

(1)求證:△ABC是等腰三角形;

(2)判斷點O是否在∠BAC的平分線上,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一張面積為240的長方形彩紙,長比寬大8,設它的寬為x,可列方程( 。

A. 8x240 B. xx8)=240 C. xx+8)=240 D. 88+x)=240

查看答案和解析>>

同步練習冊答案