【題目】已知:四邊形ABCD中,AB=2,CD=3,M、N分別是AD,BC的中點,則線段MN的取值范圍是( )
A. 1<MN<5 B. 1<MN≤5 C. <MN< D. <MN≤
【答案】D
【解析】分析:當(dāng)AB∥CD時,MN最短,利用中位線定理可得MN的最長值,作出輔助線,利用三角形中位線及三邊關(guān)系可得MN的其他取值范圍.
詳解:連接BD,過M作MG∥AB,連接NG.
∵M是邊AD的中點,AB=2,MG∥AB,
∴MG是△ABD的中位線,BG=GD,MG=AB=×2=1;
∵N是BC的中點,BG=GD,CD=3,
∴NG是△BCD的中位線,NG=CD=×3=,
在△MNG中,由三角形三邊關(guān)系可知MG-NG<MN<MG+NG,即-1<MN<+1,
∴<MN<,
當(dāng)MN=MG+NG,即MN=時,四邊形ABCD是梯形,
故線段MN長的取值范圍是<MN≤.
故選:D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在社會主義新農(nóng)村建設(shè)中,衢州某鄉(xiāng)鎮(zhèn)決定對A、B兩村之間的公路進行改造,并有甲工程隊從A村向B村方向修筑,乙工程隊從B村向A村方向修筑.已知甲工程隊先施工3天,乙工程隊再開始施工.乙工程隊施工幾天后因另有任務(wù)提前離開,余下的任務(wù)有甲工程隊單獨完成,直到公路修通.下圖是甲乙兩個工程隊修公路的長度y(米)與施工時間x(天)之間的函數(shù)圖象,請根據(jù)圖象所提供的信息解答下列問題:
(1)乙工程隊每天修公路多少米?
(2)分別求甲、乙工程隊修公路的長度y(米)與施工時間x(天)之間的函數(shù)關(guān)系式.
(3)若該項工程由甲、乙兩工程隊一直合作施工,需幾天完成?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列四項調(diào)查中,方式正確的是
A. 了解本市中學(xué)生每天學(xué)習(xí)所用的時間,采用全面調(diào)查的方式
B. 為保證運載火箭的成功發(fā)射,對其所有的零部件采用抽樣調(diào)查的方式
C. 了解某市每天的流動人口數(shù),采用全面調(diào)查的方式
D. 了解全市中學(xué)生的視力情況,采用抽樣調(diào)查的方式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七(1)班學(xué)生為了解某小區(qū)家庭月均用水情況,隨機調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進行如下整理,已知該小區(qū)用水量不超過的家庭占被調(diào)查家庭總數(shù)的百分比為12%,請根據(jù)以上信息解答下列問題:
級別 | ||||||
月均用水量 | ||||||
頻數(shù)(戶) | 6 | 12 | 10 | 4 | 2 |
(1)本次調(diào)查采用的方式是 (填“普查”或“抽樣調(diào)查”),樣本容量是 ;
(2)補全頻率分布直方圖;
(3)若將調(diào)查數(shù)據(jù)繪制成扇形統(tǒng)計圖,則月均用水量“”的圓心角度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀理解下面的例題,再按要求解答下列問題: 同學(xué)們,我們把學(xué)習(xí)新的數(shù)學(xué)知識的時候,經(jīng)常利用“化歸“的數(shù)學(xué)思想方法解決問題,比如,我們在學(xué)習(xí)二元一次方程組的解法時,是通過“消元”的方法將二元方程化歸成我們所 熟悉的一元方程,從而正確求解.下面我們就利用“化歸”的數(shù)學(xué)方法解決新的問題. 首先,我們把像這樣,只含有一個未知數(shù),并且未知教的最高次數(shù)是的不等式,稱為一元二次不等式.通過以前的學(xué)習(xí),我們已經(jīng)認(rèn)識了一無一次不等式、一元一次不等式組并掌握 了它們的解法.同學(xué)們,你們能類比一元一次不等式(組)的解法求出一元二次不等式的解 集嗎? 例題:解一元二次不等式為了解決這個問題,我們需要將一元二次不等式“化歸”到一元一次不等式(組),通過平方差公式的逆用,我們可以把寫成的形式,從面將轉(zhuǎn)化為,然后再利用兩數(shù)相乘的符號性質(zhì)將一元二次不等式轉(zhuǎn)化成一元一次不等式(組),從而解決問題.
解:
可化為
由有理數(shù)的乘法法則“兩數(shù)相乘,同號得正”,得①②
解不等式組①,
解不等式組②,
即一元二次不等式的解集為
拓展應(yīng)用:
求一元二次不等式的解集.
求分式不等式的解集.
求一元二次不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD為正方形,AB=2,點E為對角線AC上一動點,連接DE,過點E作EF⊥DE,交射線BC于點F,以DE,EF為鄰邊作矩形DEFG,連接CG.
(1)求證:矩形DEFG是正方形;
(2)探究:CE+CG的值是否為定值?若是,請求出這個定值;若不是,請說明理由;
(3)設(shè)AE=x,四邊形DEFG的面積為S,求出S與x的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為解決中小學(xué)大班額問題,某縣今年將改擴建部分中小學(xué),根據(jù)預(yù)算,改擴建3所中學(xué)和2所小學(xué)共需資金6200萬元,改擴建1所中學(xué)和3所小學(xué)共需資金4400萬元
(1)改擴建1所中學(xué)和1所小學(xué)所需資金分別是多少萬元?
(2)該縣計劃改擴建中小學(xué)共10所,改擴建資金由國家財政和地方財政共同承擔(dān).若國家財政撥付資金不超過8400萬元;地方財政投入資金不少于4000萬元,其中地方財政投入到中小學(xué)的改擴建資金分別為每所500萬元和300萬元,請問共有哪幾種改擴建方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲口袋中放有3個紅球和5個白球,乙口袋中放有7個紅球和9個白球,所有球除顏色外都相同.充分?jǐn)噭騼蓚口袋,分別從兩個口袋中任意摸出一個球,設(shè)從甲中摸出紅球的概率是(紅),從乙中摸出紅球的概率是(紅).
(1)求(紅)與(紅)的值,并比較它們的大。
(2)將甲、乙兩個口袋的球都倒入丙口袋,充分?jǐn)噭蚝螅O(shè)從丙中任意摸出一球是紅球的概率為(紅).小明認(rèn)為:(紅)(紅)(紅).他的想法正確嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程組或不等式解應(yīng)用題
現(xiàn)有,兩種商品,買2件商品和1件商品用了80元,買4件商品和3件商品用了180元
(1)求,兩種商品每件各是多少元?
(2)如果小亮準(zhǔn)備購買,兩種商品共10件,總費用不超過260元,至少買多少件商品?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com