【題目】如圖,點A從原點O出發(fā)沿數(shù)軸向左運動,同時,點B也從原點出發(fā)沿數(shù)軸向右運動,5秒后,兩點相距15個單位長度,已知點B的速度是點A的速度的2倍(速度單位:單位長度/秒)

1)求出點A、點B運動的速度;并在數(shù)軸上標(biāo)出A、B兩點從原點O出發(fā)運動5秒時的位置.

2)若A、B兩點從(1)中的位置開始,仍以原來的速度同時沿數(shù)軸向左運動,

①再過幾秒,A、B兩點重合?

②再過幾秒,可以讓AB、O三點中一點是另外兩點所成線段的中點?

【答案】1A的速度為1;B的速度為2,圖見解析;(2)①15秒②秒或

【解析】

1)設(shè)A的速度是x單位長度/秒,則B的速度為2x單位長度/秒,根據(jù)行程問題的數(shù)量關(guān)系建立方程求出其解即可;

2)①設(shè)y秒后,A、B兩點重合,根據(jù)兩點的距離差為15建立方程求出其解即可;

②設(shè)z秒后,原點恰好在A、B的正中間,根據(jù)兩點到原點的距離相等建立方程求出其解即可.

1)設(shè)A的速度是x單位長度/秒,則B的速度為2x單位長度/秒,由題意,得

5x2x)=15

解得:x1,

B的速度為2

A到達的位置為5,B到達的位置是10,在數(shù)軸上的位置如圖:

答:A的速度為1;B的速度為2

2)①設(shè)y秒后,A、B兩點重合,由題意,得

2yy105),

y15

答:再過15秒,AB兩點重合;

②設(shè)z秒后,

原點恰好在AB的正中間,由題意,得

102zz5

z

B點恰好在A、原點的正中間,由題意,得

22z10)=z5

z

A點恰好在B、原點的正中間,由題意,得

2z102z5),

無解.

答:再過秒或時,原點恰好處在點A、點B的正中間.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是小強洗漱時的側(cè)面示意圖,洗漱臺(矩形ABCD)靠墻擺放,高AD=80cm,寬AB=48cm,小強身高166cm,下半身FG=100cm,洗漱時下半身與地面成80°(∠FGK=80°),身體前傾成125°(∠EFG=125°),腳與洗漱臺距離GC=15cm(點D,C,G,K在同一直線上).

(1)此時小強頭部E點與地面DK相距多少?

(2)小強希望他的頭部E恰好在洗漱盆AB的中點O的正上方,他應(yīng)向前或后退多少?

(sin80°≈0.98,cos80°≈0.17, ≈1.41,結(jié)果精確到0.1cm)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖已知數(shù)軸上點分別表示、,且互為相反數(shù),為原點.

1______,______;

2)將數(shù)軸沿某個點折疊,使得點與表示-10的點重合,則此時與點重合的點所表示的數(shù)為______;

3)若點分別從點、同時出發(fā),點以每秒1個單位長度的速度沿數(shù)軸向左勻速運動,點以每秒2個單位長度的速度沿數(shù)軸向右勻速運動,到點后立刻原速返回,設(shè)運動時間為.

①點表示的數(shù)是______(用含的代數(shù)式表示);

②求為何值時,;

③求為何值時,點相距3個單位長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某勘測隊在一條近似筆直的河流l兩邊勘測(河寬忽略不計),共設(shè)置了A,B,C三個勘測點.

1)若勘測隊在A點建一水池,現(xiàn)將河水引入到水池A中,則在河岸的什么位置開溝,才能使水溝的長度最短?請在圖1中畫出圖形;你畫圖的依據(jù)是   

2)若勘測隊在河岸某處開溝,使得該處到勘測點B,C所挖水溝的長度之和最短,請在圖2中畫出圖形;你畫圖的依據(jù)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD中,AE⊥BC于點E,以點B為中心,取旋轉(zhuǎn)角等于∠ABC,把△BAE順時針旋轉(zhuǎn),得到△BA′E′,連接DA′.若∠ADC=60°,∠ADA′=50°,則∠DA′E′的大小為( )

A. 130° B. 150° C. 160° D. 170°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在活動課上,小明和小紅合作用一副三角板來測量學(xué)校旗桿高度.已知小明的眼睛與地面的距離(AB)是1.7m,他調(diào)整自己的位置,設(shè)法使得三角板的一條直角邊保持水平,且斜邊與旗桿頂端M在同一條直線上,測得旗桿頂端M仰角為45°;小紅的眼睛與地面的距離(CD)是1.5m,用同樣的方法測得旗桿頂端M的仰角為30°.兩人相距28米且位于旗桿兩側(cè)(點B、N、D在同一條直線上).求出旗桿MN的高度.(參考數(shù)據(jù): ,結(jié)果保留整數(shù).)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AD=3,CD=4,點ECD上,且DE=1.

(1)感知:如圖①,連接AE,過點EEFAE,交BC于點F,連接AE,易證:△ADE≌△ECF(不需要證明);

(2)探究:如圖②,點P在矩形ABCD的邊AD上(點P不與點A、D重合),連接PE,過點EEFPE,交BC于點F,連接PF.求證:△PDE和△ECF相似;

(3)應(yīng)用:如圖③,若EFAB于點F,EFPE,其他條件不變,且△PEF的面積是6,則AP的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,與互為余角,與互為補角,平分,平分

1)如圖,當(dāng)時,求的度數(shù);

2)在(1)的條件下,請你補全圖形,并求的度數(shù);

3)當(dāng)為大于的銳角,且有重合部分時,請求出的度數(shù).(寫出說理過程,用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知為整數(shù)

1能取最 (填“大”或“小”)值是 .此時=

2+2能取最 (填“大”或“小”)值是 .此時=

3能取最 (填“大”或“小”)值是 .此時=

4能取最 (填“大”或“小”)值是 此時=

查看答案和解析>>

同步練習(xí)冊答案