【題目】某中學(xué)數(shù)學(xué)興趣小組為了解本校學(xué)生對(duì)電視節(jié)目的喜愛情況,隨機(jī)調(diào)查了部分學(xué)生最喜愛哪一類節(jié)目 (被調(diào)查的學(xué)生只選一類并且沒有不選擇的),并將調(diào)查結(jié)果制成了如下的兩個(gè)統(tǒng)計(jì)圖(不完整).請(qǐng)你根據(jù)圖中所提供的信息,完成下列問題:

(1)求本次調(diào)查的學(xué)生人數(shù);
(2)請(qǐng)將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整,并求出新聞節(jié)目在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);
(3)若該中學(xué)有2000名學(xué)生,請(qǐng)估計(jì)該校喜愛電視劇節(jié)目的人數(shù).

【答案】
(1)

解: 69÷23%=300(人)

∴本次共調(diào)查300人;


(2)

解:∵喜歡娛樂節(jié)目的人數(shù)占總?cè)藬?shù)的20%,

∴20%×300=60(人),補(bǔ)全如圖;

∵360°×12%=43.2°,

∴新聞節(jié)目在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù)為43.2°;


(3)

解:2000×23%=460(人),

∴估計(jì)該校有460人喜愛電視劇節(jié)目.


【解析】(1)根據(jù)喜愛電視劇的人數(shù)是69人,占總?cè)藬?shù)的23%,即可求得總?cè)藬?shù);
(2)根據(jù)總?cè)藬?shù)和喜歡娛樂節(jié)目的百分?jǐn)?shù)可求的其人數(shù),補(bǔ)全即可;利用360°乘以對(duì)應(yīng)的百分比即可求得圓心角的度數(shù);
(3)利用總?cè)藬?shù)乘以對(duì)應(yīng)的百分比即可求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,點(diǎn)B在線段AE上,點(diǎn)C在線段AD上.

(1)請(qǐng)直接寫出線段BE與線段CD的關(guān)系:;
(2)如圖2,將圖1中的△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)角α(0<α<360°),
①(1)中的結(jié)論是否成立?若成立,請(qǐng)利用圖2證明;若不成立,請(qǐng)說明理由;
②當(dāng)AC=時(shí),探究在△ABC旋轉(zhuǎn)的過程中,是否存在這樣的角α,使以A、B、C、D四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出角α的度數(shù);若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市計(jì)劃經(jīng)銷一些特產(chǎn),經(jīng)銷前,圍繞“A:綏中白梨,B:虹螺峴干豆腐,C:綏中六股河鴨蛋,D:興城紅崖子花生”四種特產(chǎn),在全市范圍內(nèi)隨機(jī)抽取了部分市民進(jìn)行問卷調(diào)查:“我最喜歡的特產(chǎn)是什么?”(必選且只選一種).現(xiàn)將調(diào)查結(jié)果整理后,繪制成如圖所示的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖.

(1)請(qǐng)補(bǔ)全扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖;
(2)若全市有280萬市民,估計(jì)全市最喜歡“虹螺峴干豆腐”的市民約有多少萬人?
(3)在一個(gè)不透明的口袋中有四個(gè)分別寫上四種特產(chǎn)標(biāo)記A、B、C、D的小球(除標(biāo)記外完全相同),隨機(jī)摸出一個(gè)小球然后放回,混合搖勻后,再隨機(jī)摸出一個(gè)小球,則兩次都摸到“A”的概率為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過原點(diǎn)O的直線AB與反比例函數(shù)(k>0)的圖象交于A、B兩點(diǎn),點(diǎn)B坐標(biāo)為(﹣2,m),過點(diǎn)A作AC⊥y軸于點(diǎn)C,OA的垂直平分線DE交OC于點(diǎn)D,交AB于點(diǎn)E.若△ACD的周長(zhǎng)為5,則k的值為.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠BAC=90°,過點(diǎn)B的直線MN∥AC,D為BC邊上一點(diǎn),連接AD,作DE⊥AD交MN于點(diǎn)E,連接AE.

(1)如圖①,當(dāng)∠ABC=45°時(shí),求證:AD=DE;
(2)如圖②,當(dāng)∠ABC=30°時(shí),線段AD與DE有何數(shù)量關(guān)系?并請(qǐng)說明理由;
(3)當(dāng)∠ABC=α?xí)r,請(qǐng)直接寫出線段AD與DE的數(shù)量關(guān)系.(用含α的三角函數(shù)表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進(jìn)一種商品,每件商品進(jìn)價(jià)30元.試銷中發(fā)現(xiàn)這種商品每天的銷售量y(件)與每件銷售價(jià)x(元)的關(guān)系數(shù)據(jù)如下:

x

30

32

34

36

y

40

36

32

28


(1)已知y與x滿足一次函數(shù)關(guān)系,根據(jù)上表,求出y與x之間的關(guān)系式(不寫出自變量x的取值范圍);
(2)如果商店銷售這種商品,每天要獲得150元利潤(rùn),那么每件商品的銷售價(jià)應(yīng)定為多少元?
(3)設(shè)該商店每天銷售這種商品所獲利潤(rùn)為w(元),求出w與x之間的關(guān)系式,并求出每件商品銷售價(jià)定為多少元時(shí)利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C,D在⊙O上,且AD平分∠CAB,過點(diǎn)D作AC的垂線,與AC的延長(zhǎng)線相交于點(diǎn)E,與AB的延長(zhǎng)線相交于點(diǎn)F.

(1)求證:EF與⊙O相切;
(2)若AB=6,AD=,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,D為線段BC的中點(diǎn),AB=2AC=2,tan∠CAD=sin∠BAC,則BC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,反比例函數(shù)y= 的圖象與正比例函數(shù)y=kx(k≠0)的圖象相交于橫坐標(biāo)為2的點(diǎn)A,平移直線OA,使它經(jīng)過點(diǎn)B(3,0),與y軸交于點(diǎn)C.
(1)求平移后直線的表達(dá)式;
(2)求∠OBC的余切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案