【題目】如圖1,點(diǎn)F從菱形ABCD的頂點(diǎn)A出發(fā),沿ADB1cm/s的速度勻速運(yùn)動(dòng)到點(diǎn)B,圖2是點(diǎn)F運(yùn)動(dòng)時(shí),△FBC的面積ycm2)隨時(shí)間xs)變化的關(guān)系圖象,則a的值為( )

A. B. 2C. D. 5

【答案】A

【解析】

通過(guò)分析圖象,點(diǎn)F從點(diǎn)ADas,此時(shí),FBC的面積為a,依此可求菱形的高DE,再由圖象可知,BD=,應(yīng)用兩次勾股定理分別求BEa

解:過(guò)點(diǎn)DDEBC于點(diǎn)E


由圖象可知,點(diǎn)F由點(diǎn)A到點(diǎn)D用時(shí)為as,FBC的面積為acm2
AD=a
DEADa
DE=2
點(diǎn)FDB,用s
BD=,

RtDBE中,
BE===1,

ABCD是菱形
EC=a-1,DC=a
RtDEC中,
a2=22+(a-1)2
解得a=.

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小王、小張和小梅打算各自隨機(jī)選擇本周六的上午或下午去高郵湖的湖上花海去踏青郊游.

(1)小王和小張都在本周六上午去踏青郊游的概率為_(kāi)______;

(2)求他們?nèi)嗽谕粋(gè)半天去踏青郊游的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,地面BD上兩根等長(zhǎng)立柱AB,CD之間懸掛一根近似成拋物線y= x2x+3的繩子.

(1)求繩子最低點(diǎn)離地面的距離;

(2)因?qū)嶋H需要,在離AB為3米的位置處用一根立柱MN撐起繩子(如圖2),使左邊拋物線F1的最低點(diǎn)距MN為1米,離地面1.8米,求MN的長(zhǎng);

(3)將立柱MN的長(zhǎng)度提升為3米,通過(guò)調(diào)整MN的位置,使拋物線F2對(duì)應(yīng)函數(shù)的二次項(xiàng)系數(shù)始終為,設(shè)MN離AB的距離為m,拋物線F2的頂點(diǎn)離地面距離為k,當(dāng)2k2.5時(shí),求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB<AD,D=30°,CD=4,以AB為直徑的⊙OBC于點(diǎn)E,則陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn),且與軸另交點(diǎn)為.

1)求拋物線的解析式;

2)如圖,直線與拋物線相交于點(diǎn)和點(diǎn)(點(diǎn)在第二象限),求的值(用含的式子表示);

3)在(2)中,若,設(shè)點(diǎn)是點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn),如圖.平面內(nèi)是否存在點(diǎn),使得以點(diǎn)、為頂點(diǎn)的四邊形是菱形?若存在,直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某塔觀光層的最外沿點(diǎn)E為蹦極項(xiàng)目的起跳點(diǎn).已知點(diǎn)E離塔的中軸線AB的距離OE為10米,塔高AB為123米(AB垂直地面BC),在地面C處測(cè)得點(diǎn)E的仰角α=45°,從點(diǎn)C沿CB方向前行40米到達(dá)D點(diǎn),在D處測(cè)得塔尖A的仰角β=60°,求點(diǎn)E離地面的高度EF.(結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=x經(jīng)過(guò)點(diǎn)A,作ABx軸于點(diǎn)B,將ABO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到CBD,若點(diǎn)B的坐標(biāo)為(2,0),則點(diǎn)C的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=-x2+mx+nx軸交于點(diǎn)A,BAB的左側(cè)).

1)拋物線的對(duì)稱軸為直線x=-3,AB=4.求拋物線的表達(dá)式;

2)平移(1)中的拋物線,使平移后的拋物線經(jīng)過(guò)點(diǎn)O,且與x正半軸交于點(diǎn)C,記平移后的拋物線頂點(diǎn)為P,若OCP是等腰直角三角形,求點(diǎn)P的坐標(biāo);

3)當(dāng)m=4時(shí),拋物線上有兩點(diǎn)Mx1,y1)和Nx2,y2),若x12,x22,x1+x24,試判斷y1y2的大小,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,為原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為.拋物線經(jīng)過(guò)點(diǎn),,與交于點(diǎn).

(1)求拋物線的函數(shù)解析式;

(2)為線段上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)重合),為線段上一個(gè)動(dòng)點(diǎn),,連接,設(shè),的面積為,求的最大值及此時(shí)點(diǎn)的坐標(biāo);

(3)(2)的條件下,為拋物線的對(duì)稱軸上一點(diǎn),請(qǐng)求出使為銳角三角形時(shí),點(diǎn)的縱坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案