如圖①所示,已知A、B為直線l上兩點,點C為直線l上方一動點,連接AC、BC,分別以AC、BC為邊向△ABC外作正方形CADF和正方形CBEG,過點D作DD1⊥l于點D1,過點E作EE1⊥l于點E1

(1)如圖②,當點E恰好在直線l上時(此時E1與E重合),試說明DD1=AB;

(2)在圖①中,當D、E兩點都在直線l的上方時,試探求三條線段DD1、EE1、AB之間的數(shù)量關系,并說明理由;

(3)如圖③,當點E在直線l的下方時,請直接寫出三條線段DD1、EE1、AB之間的數(shù)量關系.(不需要證明)

 

【答案】

(1)證明:∵四邊形CADF、CBEG是正方形,

∴AD=CA,∠DAC=∠ABC=90°,

∴∠DAD1+∠CAB=90°,

∵DD1⊥AB,

∴∠DD1A=∠ABC=90°,

∴∠DAD1+∠ADD1=90°,

∴∠ADD1=∠CAB,

在△ADD1和△CAB中,∠DD1A=∠ABC  ∠ADD1=∠CAB  AD=CA,

∴△ADD1≌△CAB(AAS),

∴DD1=AB;

(2)解:AB=DD1+EE1

證明:過點C作CH⊥AB于H,

∵DD1⊥AB,

∴∠DD1A=∠CHA=90°,

∴∠DAD1+∠ADD1=90°,

∵四邊形CADF是正方形,

∴AD=CA,∠DAC=90°,

∴∠DAD1+∠CAH=90°,

∴∠ADD1=∠CAH,

在△ADD1和△CAH中,∠DD1A=∠CHA ∠ADD1=∠CAH  AD=CA,

∴△ADD1≌△CAH(AAS),

∴DD1=AH;

同理:EE1=BH,

∴AB=AH+BH=DD1+EE1;

(3)AB=DD1-EE1

證明:過點C作CH⊥AB于H,

∵DD1⊥AB,

∴∠DD1A=∠CHA=90°,

∴∠DAD1+∠ADD1=90°,

∵四邊形CADF是正方形,

∴AD=CA,∠DAC=90°,

∴∠DAD1+∠CAH=90°,

∴∠ADD1=∠CAH,

在△ADD1和△CAH中,∠DD1A=∠CHA  ∠ADD1=∠CAH  AD=CA,

∴△ADD1≌△CAH(AAS),

∴DD1=AH;

同理:EE1=BH,

∴AB=AH-BH=DD1-EE1

【解析】(1)由四邊形CADF、CBEG是正方形,可得AD=CA,∠DAC=∠ABC=90°,又由同角的余角相等,求得∠=∠CAB,然后利用AAS證得△≌△CAB,根據(jù)全等三角形的對應邊相等,即可得;

(2)首先過點C作CH⊥AB于H,由⊥AB,可得∠∠CHA=90°,由四邊形CADF是正方形,可得AD=CA,又由同角的余角相等,求得∠=∠CAH,然后利用AAS證得△≌△CAH,根據(jù)全等三角形的對應邊相等,即可得DD1=AH,同理EE1=BH,則可得

(3)證明方法同(2),易得

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖9所示,已知:∠α、線段a,求作等腰三角形△ABC,使腰長AB=a,底角∠A=∠α.(要求寫出作法,并保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•黃石)如圖1所示,已知直線y=kx+m與x軸、y軸分別交于點A、C兩點,拋物線y=-x2+bx+c經過A、C兩點,點B是拋物線與x軸的另一個交點,當x=-
1
2
時,y取最大值
25
4

(1)求拋物線和直線的解析式;
(2)設點P是直線AC上一點,且S△ABP:S△BPC=1:3,求點P的坐標;
(3)直線y=
1
2
x+a與(1)中所求的拋物線交于點M、N,兩點,問:
①是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,請說明理由.
②猜想當∠MON>90°時,a的取值范圍.(不寫過程,直接寫結論)
(參考公式:在平面直角坐標系中,若M(x1,y1),N(x2,y2),則M、N兩點之間的距離為|MN|=
(x2-x1)2+(y2-y1)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•義烏市)如圖1所示,已知y=
6
x
(x>0)圖象上一點P,PA⊥x軸于點A(a,0),點B坐標為(0,b)(b>0),動點M是y軸正半軸上B點上方的點,動點N在射線AP上,過點B作AB的垂線,交射線AP于點D,交直線MN于點Q連接AQ,取AQ的中點為C.
(1)如圖2,連接BP,求△PAB的面積;
(2)當點Q在線段BD上時,若四邊形BQNC是菱形,面積為2
3
,求此時P點的坐標;
(3)當點Q在射線BD上時,且a=3,b=1,若以點B,C,N,Q為頂點的四邊形是平行四邊形,求這個平行四邊形的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1所示為一上面無蓋的正方體紙盒,現(xiàn)將其剪開展成平面圖,如圖2精英家教網所示.已知展開圖中每個正方形的邊長為1.
(1)求在該展開圖中可畫出最長線段的長度這樣的線段可畫幾條?
(2)試比較立體圖中∠BAC與平面展開圖中∠B′A′C′的大小關系?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1所示,已知在△ABC和△DEF中,AB=EF,∠B=∠E,EC=BD
(1)試說明:△ABC≌△FED;
(2)若圖形經過平移和旋轉后得到圖2,且有∠EDB=25°,∠A=66°,試求∠AMD的度數(shù);
(3)將圖形繼續(xù)旋轉后得到圖3,此時D,B,F(xiàn)三點在同一條直線上,若DB=2DF,連接EB,已知△EFB的面積為5cm2,你能求出四邊形ABED的面積嗎?若能,請求出來;若不能,請你說明理由.

查看答案和解析>>

同步練習冊答案