已知:如圖,在⊙O中,直徑AB的長為10,弦AC的長為6,∠ACB的平分線交⊙O于點D,求BC和BD的長.
∵⊙O直徑AB為10,
∴∠ACB=∠ADB=90°,
∵弦AC為6,
∴BC=
AB2-AC2
=
102-62
=8,
∵∠ACB的平分線交⊙O于D,
AD
=
BD
,
∴AD=BD,
∴AD=BD=5
2

故BC=8,BD=5
2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,若六邊形ABCDEF是⊙O的內(nèi)接正六邊形,則∠AED=______,∠FAE=______,∠DAB=______,∠EFA=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在⊙O中弦AB⊥CD于點E,過E作AC的垂線交BD于點Q,P為垂足,求證Q為BD的中點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,AB是⊙O的直徑,∠AOC=80°,則圓周角∠BDC的度數(shù)為( 。
A.40°B.50°C.60°D.80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知在⊙O中,點A、B、C分別是圓上的三點,且∠AOB=72°,則∠ACB的度數(shù)為______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在半徑為4的⊙O中,AB、CD是兩條直徑,M為OB的中點,CM的延長線交⊙O于點E,且EM>MC.連接DE,DE=
15

(1)求EM的長;
(2)求sin∠EOB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

我們所學(xué)的幾何知識可以理解為對“構(gòu)圖”的研究:根據(jù)給定的(或構(gòu)造的)幾何圖形提出相關(guān)的概念和問題(或者根據(jù)問題構(gòu)造圖形),并加以研究.
例如:在平面上根據(jù)兩條直線的各種構(gòu)圖,可以提出“兩條直線平行”、“兩條直線相交”的概念;若增加第三條直線,則可以提出并研究“兩條直線平行的判定和性質(zhì)”等問題(包括研究的思想和方法).
請你用上面的思想和方法對下面關(guān)于圓的問題進(jìn)行研究:
(1)如圖1,在圓O所在平面上,放置一條直線m(m和圓O分別交于點A、B),根據(jù)這個圖形可以提出的概念或問題有哪些?(直接寫出兩個即可)
(2)如圖2,在圓O所在平面上,請你放置與圓O都相交且不同時經(jīng)過圓心的兩條直線m和n(m與圓O分別交于點A、B,n與圓O分別交于點C、D).請你根據(jù)所構(gòu)造的圖形提出一個結(jié)論,并證明之;
(3)如圖3,其中AB是圓O的直徑,AC是弦,D是
ABC
的中點,弦DE⊥AB于點F.請找出點C和點E重合的條件,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,AD是△ABC外接圓⊙O的直徑,AE是△ABC的邊BC上的高,DF⊥BC,F(xiàn)為垂足.
(1)求證:BF=EC;
(2)若C點是弧AD的中點,且DF=3,AE=3,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知∠ACB是⊙O的圓周角,∠ACB=50°,則圓心角∠AOB是( 。
A.40°B.50°C.80°D.100°

查看答案和解析>>

同步練習(xí)冊答案