如圖,在△ABC中,∠ACB=90°,AC=BC=2.E、F分別是射線AC、CB上的動(dòng)點(diǎn),且AE=BF,EF與AB交于點(diǎn)G,EH⊥AB于點(diǎn)H,設(shè)AE=x,GH=y,下面能夠反映y與x之間函數(shù)關(guān)系的圖象是( )

A.
B.
C.
D.
【答案】分析:判斷出△ABC是等腰直角三角形,然后再判斷出△AHE是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)求出AB、AH的長(zhǎng),過(guò)點(diǎn)B作BD∥AC交EF于點(diǎn)D,然后利用平行線分線段成比例定理分別列式=,=,再表示出BD,然后求出BG的長(zhǎng)度,最后根據(jù)GH=AB-AH-BG,代入數(shù)據(jù)整理即可得到y(tǒng)與x的函數(shù)關(guān)系式,再根據(jù)函數(shù)相應(yīng)的圖象解答.
解答:解:∵∠ACB=90°,AC=BC=2,
∴△ABC是等腰直角三角形,
∴AB===2,∠A=45°,
∵EH⊥AB于點(diǎn)H,
∴△AHE是等腰直角三角形,
∴AH=AE=x,
過(guò)點(diǎn)B作BD∥AC交EF于點(diǎn)D,
==,
∴BD=•AE=•x,BD=•EC=•(2-x),
•x=•(2-x),
整理得,BG(x+2)=(2-BG)(2-x),
解得BG=-x,
根據(jù)圖形,GH=AB-AH-BG,
=2-x-(-x),
=2-x-+x,
=,
即y=,是一條平行于x軸的直線.
故選C,
點(diǎn)評(píng):本題考查了動(dòng)點(diǎn)問(wèn)題的函數(shù)圖象,主要利用了等腰直角三角的判定與性質(zhì),平行線分線段成比例定理,作輔助線利用平行線分線段成比例定理兩次表示出BD是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案