【題目】如圖,點P在正方形ABCD邊AD上,連接PB.過點B作一條射線與邊DC的延長線交于點Q,使得∠QBE=∠PBC,其中E是邊AB延長線上的點,連接PQ.若PQ2=PB2+PD2+2,則△PAB的面積為_____.
【答案】
【解析】
首先由∠QBE=∠PBC,∠QBE+∠QBC=90°易得△PAB與△QCB均為直角三角形,再證得△PAB≌△QCB,可知QC=PA,設(shè)正方形的邊長AB=a,PA=x,利用方程思想和勾股定理,等量代換易得ax,可得結(jié)果.
∵∠QBE=∠PBC,∠QBE+∠QBC=90°
∴∠PBQ=∠PBC+∠QBC=90°
∵∠PBC+∠PBA=90°
∴∠PBA=∠QBC
∴在△PAB和△QCB中
,
∴△PAB≌△QCB(ASA)
∴PB=QB
設(shè)正方形ABCD的邊長AB=a,PA=x
∵△PAB≌△QCB
∴QC=PA=x
∴DQ=DC+QC=a+x,PD=AD﹣PA=a﹣x
在Rt△PAB中,
PB2=PA2+AB2=x2+a2
∵PQ2=PB2+PD2+2
∴(a﹣x)2+(a+x)2=x2+a2+(a﹣x)2+2
化簡得:2ax=2
∴ax=1
∴△PAB的面積
S=PAAB=ax=
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣(2k+1)x+k2+1=0.
(1)若方程有兩個不相等的實數(shù)根,求k的取值范圍;
(2)若方程的兩根恰好是一個矩形兩鄰邊的長,且k=2,求該矩形的對角線L的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O中,AB是⊙O的直徑,G為弦AE的中點,連接OG并延長交⊙O于點D,連接BD交AE于點F,延長AE至點C,使得FC=BC,連接BC.
(1)求證:BC是⊙O的切線;
(2)⊙O的半徑為5,tanA=,求FD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將直線y=x向下平移b個單位長度后得到直線l,l與反比例函數(shù)y=(k>0,x>0)的圖象相交于點A,與x軸相交于點B,則OA2﹣OB2=10,則k的值是( 。
A. 5 B. 10 C. 15 D. 20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩輛汽車同時從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時間,如圖,L1,L2分別表示兩輛汽車的s與t的關(guān)系.
(1)L1表示哪輛汽車到甲地的距離與行駛時間的關(guān)系?
(2)汽車B的速度是多少?
(3)求L1,L2分別表示的兩輛汽車的s與t的關(guān)系式.
(4)2小時后,兩車相距多少千米?
(5)行駛多長時間后,A、B兩車相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點H,∠K﹣∠H=27°,則∠K=( 。
A. 76° B. 78° C. 80° D. 82°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線OD與x軸所夾的銳角為30°,OA1的長為2,△A1A2B1、△A2A3B2、△A3A4B3…△AnAn+1Bn均為等邊三邊形,點A1、A2、A3…An﹣1在x軸正半軸上依次排列,點B1、B2、B3…Bn在直線OD上依次排列,那么點B2的坐標(biāo)為____,點Bn的坐標(biāo)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=5,AC=4,BC=3.若點P在△ABC內(nèi)部(含邊界)且滿足PC≤PA≤PB,則所有點P組成的區(qū)域的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,△ABC的位置如圖所示.
(1)頂點A關(guān)于x軸對稱的點A′的坐標(biāo)(____________),頂點B的坐標(biāo)(____________),頂點C關(guān)于原點對稱的點C′的坐標(biāo)(____________).
(2)△ABC的面積為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com